Direct Fabrication of 3D Electrodes Based on Graphene and Conducting Polymers for Supercapacitor Applications

被引:8
作者
Jimoh, Musibau Francis [1 ]
Carson, Gray Scott [2 ]
Anderson, Mackenzie Babetta [2 ]
El-Kady, Maher F. [2 ]
Kaner, Richard B. [1 ,2 ,3 ]
机构
[1] Univ Calif Los Angeles UCLA, Dept Mat Sci & Engn, Los Angeles, CA 90095 USA
[2] Univ Calif Los Angeles UCLA, Dept Chem & Biochem, Los Angeles, CA 90095 USA
[3] Univ Calif Los Angeles UCLA, Calif Nanosyst Inst, Los Angeles, CA 90095 USA
关键词
Graphene; one-step; PEDOT nanofibers; supercapacitor; vapor phase polymerization; AREAL CAPACITANCE; PERFORMANCE; POLY(3,4-ETHYLENEDIOXYTHIOPHENE); OXIDE; POLYMERIZATION; STABILITY;
D O I
10.1002/adfm.202405569
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The development of commercially viable composite conducting polymer electrodes for energy storage is limited by the requirement of multiple and complex fabrication steps, low energy density, and poor cycling stability. In this work, a straightforward, economical, single-step method is developed for creating densely packed nanostructured PEDOT/graphene composite material demonstrating its application as an electrode for supercapacitors. The electrode achieved the highest mass loading reported so far in the literature for composite vapor phase polymerized PEDOT/rGO using aqueous FeCl3 (25.2 mg cm(-2)), and displayed an ultrahigh areal capacitance of 4628.3 mF cm(-2) at 0.5 mA cm(-2). The symmetric two-electrode setup displayed an energy density of 169.3 mu Wh cm(-2) and a 70% capacitance retention after 70 000 cycles, showcasing its exceptional performance and durability.
引用
收藏
页数:12
相关论文
共 76 条
[61]   Graphene/oligoaniline based supercapacitors: Towards conducting polymer materials with high rate charge storage [J].
Wang, Haosen ;
Yu, Ziwei ;
El-Kady, Maher F. ;
Anderson, Mackenzie ;
Kowal, Matthew D. ;
Li, Mengping ;
Kaner, Richard B. .
ENERGY STORAGE MATERIALS, 2019, 19 :137-147
[62]   Solid-State Precursor Impregnation for Enhanced Capacitance in Hierarchical Flexible Poly(3,4-Ethylenedioxythiophene) Supercapacitors [J].
Wang, Hongmin ;
Yang, Haoru ;
Diao, Yifan ;
Lu, Yang ;
Chrulski, Kenneth ;
D'Arcy, Julio M. .
ACS NANO, 2021, 15 (04) :7799-7810
[63]   Functionalization of Graphene Oxide and its Composite with Poly(3,4-ethylenedioxythiophene) as Electrode Material for Supercapacitors [J].
Wang, Minchao ;
Jamal, Ruxangul ;
Wang, Yujie ;
Yang, Lei ;
Liu, Fangfang ;
Abdiryim, Tursun .
NANOSCALE RESEARCH LETTERS, 2015, 10
[64]   Integrated fiber electrodes based on marine polysaccharide for ultrahigh-energy-density flexible supercapacitors [J].
Wang, Pengzhen ;
Du, Xinxin ;
Wang, Xingjian ;
Zhang, Kewei ;
Sun, Jianhua ;
Chen, Zhe ;
Xia, Yanzhi .
JOURNAL OF POWER SOURCES, 2021, 506
[65]   Solution-processed poly(3,4-ethylenedioxythiophene) nanocomposite paper electrodes for high-capacitance flexible supercapacitors [J].
Wang, Zhaohui ;
Tammela, Petter ;
Huo, Jinxing ;
Zhang, Peng ;
Stromme, Maria ;
Nyholm, Leif .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (05) :1714-1722
[66]   A reliable determination method of stability limits for electrochemical double layer capacitors [J].
Weingarth, D. ;
Noh, H. ;
Foelske-Schmitz, A. ;
Wokaun, A. ;
Koetz, R. .
ELECTROCHIMICA ACTA, 2013, 103 :119-124
[67]   Vapor-phase polymerization of 3,4-ethylenedioxythiophene: A route to highly conducting polymer surface layers [J].
Winther-Jensen, B ;
West, K .
MACROMOLECULES, 2004, 37 (12) :4538-4543
[68]   PREPARATION OF THERMOSTABLE AND ELECTRIC-CONDUCTING POLY(2,5-THIENYLENE) [J].
YAMAMOTO, T ;
SANECHIKA, K ;
YAMAMOTO, A .
JOURNAL OF POLYMER SCIENCE PART C-POLYMER LETTERS, 1980, 18 (01) :9-12
[69]   High-mass loading electrodes with exceptional areal capacitance and cycling performance through a hierarchical network of MnO2 nanoflakes and conducting polymer gel [J].
Yang, Zhaokun ;
Ma, Jun ;
Araby, Sherif ;
Shi, Dongjian ;
Dong, Weifu ;
Tang, Ting ;
Chen, Mingqing .
JOURNAL OF POWER SOURCES, 2019, 412 :655-663
[70]   Using the Surface Features of Plant Matter to Create All-Polymer Pseudocapacitors with High Areal Capacitance [J].
Zhang, Lushuai ;
Andrew, Trisha L. .
ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (44) :38574-38580