Atmospheric corrosion of carbon steel: Results of one-year exposure in an andean tropical atmosphere in Colombia

被引:3
作者
Santa, Ana C. [1 ]
Montoya, Diego A. [2 ]
Tamayo, Jose A. [1 ]
Gomez, Maryory A. [2 ]
Castano, Juan G. [2 ]
Baena, Libia M. [3 ]
机构
[1] Inst Tecnol Metropolitano ITM, Grp Calidad Metrol & Prod, Medellin 050034, Antioquia, Colombia
[2] Univ Antioquia UdeA, Fac Ingn, Ctr Invest Innovac & Desarrollo Mat CIDEMAT, Calle 70 52-21, Medellin, Colombia
[3] Fac Ciencias Exactas & Aplicadas, Grp Quim Basica Aplicada & Ambiente Alquimia, Inst Tecnol Metropolitano, Medellin 050034, Antioquia, Colombia
关键词
Atmospheric corrosion; Carbon steel; Tropical atmosphere; Corrosion rate; IRON;
D O I
10.1016/j.heliyon.2024.e29391
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this study was examined the response of carbon steel to atmospheric corrosion after one-year exposure in Valle de Aburr <acute accent>a, a subregion located in northwestern Colombia. The study involved the assessment of material mass loss and corrosion rate, the characterization of atmospheric aggressiveness, and the analysis of the morphology and composition of corrosion products in five different sites. Climatological and meteorological factors were assessed by testing for chloride content, sulfur dioxide levels, and time of wetness (TOW). The analysis of corrosion products was conducted using scanning electron microscopy (SEM), X-ray diffraction (XRD), and Raman spectroscopy. Based on corrosion rates, two sites exhibited a more aggressive environment, with a corrosivity category of C3, while the remaining sites were categorized as C2. The study confirmed the presence of lepidocrocite and goethite phases on the surface of carbon steel at all test sites. Data analysis revealed that both the TOW and the industrial activity significantly influence the corrosion of this metal.
引用
收藏
页数:11
相关论文
共 35 条
[21]   Characterization of Corrosion Products on Weathering Steel Bridges Influenced by Chloride Deposition [J].
Krivy, Vit ;
Kubzova, Monika ;
Kreislova, Katerina ;
Urban, Viktor .
METALS, 2017, 7 (09)
[22]  
Kumar V., 2021, MATER TODAY-PROC, V44, P4677, DOI [10.1016/j.matpr.2020.10.939, DOI 10.1016/j.matpr.2020.10.939]
[23]   Atmospheric corrosion in subtropical areas:: influences of time of wetness and deficiency of the ISO 9223 norm [J].
Morales, J ;
Martín-Krijer, S ;
Díaz, F ;
Hernández-Borges, J ;
González, S .
CORROSION SCIENCE, 2005, 47 (08) :2005-2019
[24]  
Morcillo M., 1991, Key Eng. Mater., V20-28, P17, DOI [10.4028/www.scientific.net/KEM.20-28.17, DOI 10.4028/WWW.SCIENTIFIC.NET/KEM.20-28.17]
[25]   Atmospheric Corrosion Monitoring Sensor in Corrosion Rate Prediction of Carbon and Weathering Steels in Thailand [J].
Pongsaksawad, Wanida ;
Palsson, Namurata S. ;
Khamsuk, Piya ;
Sorachot, Sikharin ;
Chianpairot, Amnuaysak ;
Viyanit, Ekkarut ;
Shinohara, Tadashi .
MATERIALS TRANSACTIONS, 2020, 61 (12) :2348-2356
[26]  
Ríos-Rojas John Fredy, 2015, Dyna rev.fac.nac.minas, V82, P128, DOI 10.15446/dyna.v82n190.46256
[27]   Mechanistic modelling of atmospheric corrosion of carbon steel in Port-Louis by electrochemical characterisation of rust layers [J].
Seechurn, Yashwantraj ;
Wharton, Julian A. ;
Surnam, Baboo Y. R. .
MATERIALS CHEMISTRY AND PHYSICS, 2022, 291
[28]   Estimated and Stationary Atmospheric Corrosion Rate of Carbon Steel, Galvanized Steel, Copper and Aluminum in Iran [J].
Shiri, Mahdi ;
Rezakhani, Davar .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2020, 51 (01) :342-367
[29]  
SIATA, 2021, Que se espera para el Valle de Aburra en temporada de menos lluvias?
[30]   Investigating atmospheric corrosion behavior of carbon steel in coastal regions of Mauritius using Raman Spectroscopy [J].
Surnam, B. Yashwansingh R. ;
Chui, Cheng-Wei ;
Xiao, Huaping ;
Liang, Hong .
MATERIA-RIO DE JANEIRO, 2016, 21 (01) :157-168