Multifrequency nonlinear Schrodinger equation

被引:0
作者
Castello-Lurbe, David [1 ,2 ]
Silvestre, Enrique [1 ,3 ]
Andres, Miguel V. [1 ,2 ]
机构
[1] Univ Valencia, Inst Univ Ciencies Mat, Catedrat Agustin Escardino 9, Paterna 46980, Spain
[2] Univ Valencia, Dept Fis Aplicada & Electromagnetisme, Dr Moliner 50, Burjassot 46100, Spain
[3] Univ Valencia, Dept Opt & Optometria & Ciencies Visio, Dr Moliner 50, Burjassot 46100, Spain
基金
欧盟地平线“2020”;
关键词
PULSE-PROPAGATION; SUPERCONTINUUM GENERATION; WAVE-GUIDES; DISPERSION; MODE;
D O I
10.1364/OL.528926
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The multifrequency character of nonlinearity dispersion is often dismissed because, in principle, it increases the computational load exceedingly rendering an impractical modeling and, typically, nonlinearities barely depend on frequency. Nonetheless, nonlinearity dispersion has recently enabled a solution to a long-standing challenge in optics. To explore the potential of this research avenue on solid theoretical grounds, we derive a propagation equation accounting for multifrequency nonlinearities rigorously that maintains the computational advantages of conventional models. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:4713 / 4716
页数:4
相关论文
共 50 条
[41]   MODIFIED SCATTERING FOR THE NONLINEAR NONLOCAL SCHRODINGER EQUATION IN TWO SPACE DIMENSIONS [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2023, :3754-3770
[42]   Large time asymptotics for the fourth-order nonlinear Schrodinger equation [J].
Hayashi, Nakao ;
Naumkin, Pavel I. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2015, 258 (03) :880-905
[43]   A new approach to exact optical soliton solutions for the nonlinear Schrodinger equation [J].
Morales-Delgado, V. F. ;
Gomez-Aguilar, J. F. ;
Baleanu, Dumitru .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (05)
[44]   Bifurcation Analysis and Solutions of a Higher-Order Nonlinear Schrodinger Equation [J].
Li, Yi ;
Shan, Wen-rui ;
Shuai, Tianping ;
Rao, Ke .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2015, 2015
[45]   Dynamics of optical solitons in the fifth-order nonlinear Schrodinger equation [J].
Feng, Haoxuan ;
Wang, Xinyu .
OPTIK, 2022, 264
[46]   THE INTERACTION PICTURE METHOD FOR SOLVING THE GENERALIZED NONLINEAR SCHRODINGER EQUATION IN OPTICS [J].
Balac, Stephane ;
Fernandez, Arnaud ;
Mahe, Fabrice ;
Mehats, Florian ;
Texier-Picard, Rozenn .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2016, 50 (04) :945-964
[47]   New bright and dark soliton solutions for a generalized nonlinear Schrodinger equation [J].
Kader, A. H. Abdel ;
Latif, M. S. Abdel .
OPTIK, 2019, 176 :699-703
[48]   Deep Learning of the Nonlinear Schrodinger Equation in Fiber-Optic Communications [J].
Hager, Christian ;
Pfister, Henry D. .
2018 IEEE INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY (ISIT), 2018, :1590-1594
[49]   Error Estimates of Finite Difference Methods for the Biharmonic Nonlinear Schrodinger Equation [J].
Ma, Ying ;
Zhang, Teng .
JOURNAL OF SCIENTIFIC COMPUTING, 2023, 95 (01)
[50]   Condensation of classical optical waves beyond the cubic nonlinear Schrodinger equation [J].
Picozzi, Antonio ;
Rica, Sergio .
OPTICS COMMUNICATIONS, 2012, 285 (24) :5440-5448