Multifrequency nonlinear Schrodinger equation

被引:0
作者
Castello-Lurbe, David [1 ,2 ]
Silvestre, Enrique [1 ,3 ]
Andres, Miguel V. [1 ,2 ]
机构
[1] Univ Valencia, Inst Univ Ciencies Mat, Catedrat Agustin Escardino 9, Paterna 46980, Spain
[2] Univ Valencia, Dept Fis Aplicada & Electromagnetisme, Dr Moliner 50, Burjassot 46100, Spain
[3] Univ Valencia, Dept Opt & Optometria & Ciencies Visio, Dr Moliner 50, Burjassot 46100, Spain
基金
欧盟地平线“2020”;
关键词
PULSE-PROPAGATION; SUPERCONTINUUM GENERATION; WAVE-GUIDES; DISPERSION; MODE;
D O I
10.1364/OL.528926
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
The multifrequency character of nonlinearity dispersion is often dismissed because, in principle, it increases the computational load exceedingly rendering an impractical modeling and, typically, nonlinearities barely depend on frequency. Nonetheless, nonlinearity dispersion has recently enabled a solution to a long-standing challenge in optics. To explore the potential of this research avenue on solid theoretical grounds, we derive a propagation equation accounting for multifrequency nonlinearities rigorously that maintains the computational advantages of conventional models. (c) 2024 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
引用
收藏
页码:4713 / 4716
页数:4
相关论文
共 50 条
[31]   ON ASYMPTOTIC STABILITY OF MOVING GROUND STATES OF THE NONLINEAR SCHRODINGER EQUATION [J].
Cuccagna, Scipio .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2014, 366 (06) :2827-2888
[32]   Conversions and interactions of the nonlinear waves in a generalized higher-order nonlinear Schrodinger equation [J].
Cao, Bo ;
Zhang, Huan .
OPTIK, 2018, 158 :112-117
[33]   Stability of elliptic solutions to the defocusing fourth order nonlinear Schrodinger equation [J].
Sun, Wen-Rong ;
Liu, Meng-Meng .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2023, 117
[34]   Chirped Self-Similar Solutions of a Generalized Nonlinear Schrodinger Equation [J].
Fei, Jin-Xi ;
Zheng, Chun-Long .
ZEITSCHRIFT FUR NATURFORSCHUNG SECTION A-A JOURNAL OF PHYSICAL SCIENCES, 2011, 66 (1-2) :1-5
[35]   Higher-order derivative nonlinear Schrodinger equation in the critical case [J].
Naumkin, Pavel I. ;
Perez, Jhon J. .
JOURNAL OF MATHEMATICAL PHYSICS, 2018, 59 (02)
[36]   Asymptotics for the third-order nonlinear Schrodinger equation in the critical case [J].
Hayashi, Nakao ;
Kaikina, Elena I. .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2017, 40 (05) :1573-1597
[37]   On the effect of random inhomogeneities in Kerr media modelled by a nonlinear Schrodinger equation [J].
Villarroel, Javier ;
Montero, Miquel .
JOURNAL OF PHYSICS B-ATOMIC MOLECULAR AND OPTICAL PHYSICS, 2010, 43 (13)
[38]   Collective variable analysis of the nonlinear Schrodinger equation for soliton molecules in fibers [J].
Biyoghe, S. Nse ;
Ekogo, Th. B. ;
Moubissi, A. -B. .
JOURNAL OF NONLINEAR OPTICAL PHYSICS & MATERIALS, 2017, 26 (02)
[39]   Asymptotics for the fourth-order nonlinear Schrodinger equation in the critical case [J].
Hayashi, Nakao ;
Mendez-Navarro, Jesus A. ;
Naumkin, Pavel I. .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2016, 261 (09) :5144-5179
[40]   The focusing nonlinear Schrodinger equation: Effect of the coupling to a low frequency field [J].
Sulem, C ;
Sulem, PL .
MATHEMATICS AND COMPUTERS IN SIMULATION, 1997, 43 (01) :57-66