On the Positivity of Infinite Products Connected to Partitions with Even Parts Below Odd Parts and Copartitions

被引:1
作者
Burson, Hannah E. [1 ]
Eichhorn, Dennis [2 ]
机构
[1] Univ Minnesota Twin Cities, Sch Math, Minneapolis, MN 55455 USA
[2] Univ Calif Irvine, Dept Math, Irvine, CA 92697 USA
关键词
Copartitions; Partitions with even parts below odd parts; Positivity; Partitions;
D O I
10.1007/s00026-024-00704-3
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we give a combinatorial proof of a positivity result of Chern related to Andrews's EO & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\mathcal{E}\mathcal{O}<^>*$$\end{document}-type partitions. This combinatorial proof comes after reframing Chern's result in terms of copartitions.Using this new perspective, we also reprove an overpartition result of Chern by showing that it comes essentially "for free" from our combinatorial proof and some basic properties of copartitions. Finally, the application of copartitions leads us to more general positivity conjectures for families of both infinite and finite products, with a proof in one special case.
引用
收藏
页码:197 / 210
页数:14
相关论文
共 6 条
[1]   Integer Partitions with Even Parts Below Odd Parts and the Mock Theta Functions [J].
Andrews, George E. .
ANNALS OF COMBINATORICS, 2018, 22 (03) :433-445
[2]   Copartitions [J].
Burson, Hannah E. ;
Eichhorn, Dennis .
ANNALS OF COMBINATORICS, 2023, 27 (03) :519-537
[3]   Note on Partitions with Even Parts below Odd Parts [J].
Chern, S. .
MATHEMATICAL NOTES, 2021, 110 (3-4) :454-457
[4]   On a problem of George Andrews concerning partitions with even parts below odd parts [J].
Chern, Shane .
AFRIKA MATEMATIKA, 2019, 30 (5-6) :691-695
[5]   Overpartitions [J].
Corteel, S ;
Lovejoy, J .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2004, 356 (04) :1623-1635