Knowledge fused latent representation from lung ultrasound examination for COVID-19 pneumonia severity assessment

被引:2
作者
Li, Zhiqiang [1 ]
Yang, Xueping [2 ]
Lan, Hengrong [1 ]
Wang, Mixue [2 ]
Huang, Lijie [1 ]
Wei, Xingyue [1 ]
Xie, Gangqiao [1 ]
Wang, Rui [1 ]
Yu, Jing [2 ]
He, Qiong [1 ]
Zhang, Yao [2 ]
Luo, Jianwen [1 ]
机构
[1] Tsinghua Univ, Sch Biomed Engn, Beijing 100084, Peoples R China
[2] Capital Med Univ, Beijing Ditan Hosp, Dept Ultrasound, Beijing 100015, Peoples R China
基金
中国国家自然科学基金;
关键词
COVID-19; pneumonia; Deep learning; Lung ultrasound; Knowledge fusion; Severity assessment; CORONAVIRUS DISEASE 2019; QUANTITATIVE-ANALYSIS; PLEURAL LINE; CLASSIFICATION; DIAGNOSIS; CARE;
D O I
10.1016/j.ultras.2024.107409
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
COVID-19 pneumonia severity assessment is of great clinical importance, and lung ultrasound (LUS) plays a crucial role in aiding the severity assessment of COVID-19 pneumonia due to its safety and portability. However, its reliance on qualitative and subjective observations by clinicians is a limitation. Moreover, LUS images often exhibit significant heterogeneity, emphasizing the need for more quantitative assessment methods. In this paper, we propose a knowledge fused latent representation framework tailored for COVID-19 pneumonia severity assessment using LUS examinations. The framework transforms the LUS examination into latent representation and extracts knowledge from regions labeled by clinicians to improve accuracy. To fuse the knowledge into the latent representation, we employ a knowledge fusion with latent representation (KFLR) model. This model significantly reduces errors compared to approaches that lack prior knowledge integration. Experimental results demonstrate the effectiveness of our method, achieving high accuracy of 96.4 % and 87.4 % for binary-level and four-level COVID-19 pneumonia severity assessments, respectively. It is worth noting that only a limited number of studies have reported accuracy for clinically valuable exam level assessments, and our method surpass existing methods in this context. These findings highlight the potential of the proposed framework for monitoring disease progression and patient stratification in COVID-19 pneumonia cases.
引用
收藏
页数:12
相关论文
共 69 条
[1]   Lung water assessment by lung ultrasonography in intensive care: a pilot study [J].
Baldi, Giacomo ;
Gargani, Luna ;
Abramo, Antonio ;
D'Errico, Luigia ;
Caramella, Davide ;
Picano, Eugenio ;
Giunta, Francesco ;
Forfori, Francesco .
INTENSIVE CARE MEDICINE, 2013, 39 (01) :74-84
[2]   Automatic Pleural Line Extraction and COVID-19 Scoring From Lung Ultrasound Data [J].
Carrer, Leonardo ;
Donini, Elena ;
Marinelli, Daniele ;
Zanetti, Massimo ;
Mento, Federico ;
Torri, Elena ;
Smargiassi, Andrea ;
Inchingolo, Riccardo ;
Soldati, Gino ;
Demi, Libertario ;
Bovolo, Francesca ;
Bruzzone, Lorenzo .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2020, 67 (11) :2207-2217
[3]   A Review of Data Fusion Techniques [J].
Castanedo, Federico .
SCIENTIFIC WORLD JOURNAL, 2013,
[4]   Quantitative Analysis and Automated Lung Ultrasound Scoring for Evaluating COVID-19 Pneumonia With Neural Networks [J].
Chen, Jiangang ;
He, Chao ;
Yin, Jintao ;
Li, Jiawei ;
Duan, Xiaoqian ;
Cao, Yucheng ;
Sun, Li ;
Hu, Menghan ;
Li, Wenfang ;
Li, Qingli .
IEEE TRANSACTIONS ON ULTRASONICS FERROELECTRICS AND FREQUENCY CONTROL, 2021, 68 (07) :2507-2515
[5]   XGBoost: A Scalable Tree Boosting System [J].
Chen, Tianqi ;
Guestrin, Carlos .
KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, :785-794
[6]  
Chung MS, 2020, EUR RADIOL, V30, P2182, DOI [10.1007/s00330-019-06574-1, 10.1148/radiol.2020200230]
[7]   Multi-objective automatic analysis of lung ultrasound data from COVID-19 patients by means of deep learning and decision trees [J].
Custode, Leonardo Lucio ;
Mento, Federico ;
Tursi, Francesco ;
Smargiassi, Andrea ;
Inchingolo, Riccardo ;
Perrone, Tiziano ;
Demi, Libertario ;
Iacca, Giovanni .
APPLIED SOFT COMPUTING, 2023, 133
[8]   An integrated autoencoder-based hybrid CNN-LSTM model for COVID-19 severity prediction from lung ultrasound [J].
Dastider, Ankan Ghosh ;
Sadik, Farhan ;
Fattah, Shaikh Anowarul .
COMPUTERS IN BIOLOGY AND MEDICINE, 2021, 132
[9]   New International Guidelines and Consensus on the Use of Lung Ultrasound [J].
Demi, Libertario ;
Wolfram, Frank ;
Klersy, Catherine ;
De Silvestri, Annalisa ;
Ferretti, Virginia Valeria ;
Muller, Marie ;
Miller, Douglas ;
Feletti, Francesco ;
Welnicki, Marcin ;
Buda, Natalia ;
Skoczylas, Agnieszka ;
Pomiecko, Andrzej ;
Damjanovic, Domagoj ;
Olszewski, Robert ;
Kirkpatrick, Andrew W. ;
Breitkreutz, Raoul ;
Mathis, Gebhart ;
Soldati, Gino ;
Smargiassi, Andrea ;
Inchingolo, Riccardo ;
Perrone, Tiziano .
JOURNAL OF ULTRASOUND IN MEDICINE, 2023, 42 (02) :309-344
[10]   Lung Ultrasound in COVID-19 and Post-COVID-19 Patients, an Evidence-Based Approach [J].
Demi, Libertario ;
Mento, Federico ;
Di Sabatino, Antonio ;
Fiengo, Anna ;
Sabatini, Umberto ;
Macioce, Veronica Narvena ;
Robol, Marco ;
Tursi, Francesco ;
Sofia, Carmelo ;
Di Cienzo, Chiara ;
Smargiassi, Andrea ;
Inchingolo, Riccardo ;
Perrone, Tiziano .
JOURNAL OF ULTRASOUND IN MEDICINE, 2022, 41 (09) :2203-2215