Flexible Quantum Network Coding by Using Quantum Multiplexing

被引:6
作者
Yang, Yu-Guang [1 ]
Liu, Bing-Xin [1 ]
Xu, Guang-Bao [2 ]
Jiang, Dong-Huan [3 ]
Zhou, Yi-Hua [1 ]
Shi, Wei-Min [1 ]
Shang, Tao [4 ]
机构
[1] Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China
[2] Shandong Univ Sci & Technol, Coll Comp Sci & Engn, Qingdao 266590, Peoples R China
[3] Shandong Univ Sci & Technol, Coll Math & Syst Sci, Qingdao 266590, Peoples R China
[4] Beihang Univ, Sch Cyber Sci & Technol, Beijing 100083, Peoples R China
基金
中国国家自然科学基金;
关键词
flexibility; quantum communication congestion; quantum multiplexing; quantum network coding;
D O I
10.1002/qute.202400016
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Quantum network coding (QNC) aims at alleviating quantum communication congestion in quantum networks. Although several QNC protocols have been presented, they cannot meet the practical requirements that part of source nodes intend to transmit their quantum states with same or different qubit numbers via the bottleneck network simultaneously. Here, the study presents a flexible QNC protocol by using quantum multiplexing. First, the entangled pairs are generated between adjacent nodes in a heralded way by using quantum multiplexing. Then the quantum memories of the source nodes and the ones of the corresponding target nodes are entangled when the intermediate nodes execute multiple rounds of entanglement swapping operations on their quantum memories. Finally, the quantum states are transmitted from the source nodes to their corresponding target nodes by means of quantum teleportation. Compared with the existing protocols, the protocol allows an arbitrary part of the source nodes to transmit their quantum states with same or different qubit numbers via the bottleneck network simultaneously, thereby exhibiting its flexibility.
引用
收藏
页数:8
相关论文
共 57 条
[1]  
Ahlswede R., 2020, IEEE T INFORM THEORY, V46, P1204
[2]   Quantum technologies with optically interfaced solid-state spins [J].
Awschalom, David D. ;
Hanson, Ronald ;
Wrachtrup, Joerg ;
Zhou, Brian B. .
NATURE PHOTONICS, 2018, 12 (09) :516-527
[3]   Symmetry analyzer for nondestructive Bell-state detection using weak nonlinearities [J].
Barrett, SD ;
Kok, P ;
Nemoto, K ;
Beausoleil, RG ;
Munro, WJ ;
Spiller, TP .
PHYSICAL REVIEW A, 2005, 71 (06)
[4]   One-Way Quantum Repeater Based on Near-Deterministic Photon-Emitter Interfaces [J].
Borregaard, Johannes ;
Pichler, Hannes ;
Schoder, Tim ;
Lukin, Mikhail D. ;
Lodahl, Peter ;
Sorensen, Anders S. .
PHYSICAL REVIEW X, 2020, 10 (02)
[5]   Quantum repeaters:: The role of imperfect local operations in quantum communication [J].
Briegel, HJ ;
Dür, W ;
Cirac, JI ;
Zoller, P .
PHYSICAL REVIEW LETTERS, 1998, 81 (26) :5932-5935
[6]   Natural and artificial atoms for quantum computation [J].
Buluta, Iulia ;
Ashhab, Sahel ;
Nori, Franco .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (10)
[7]   Quantum copying: Beyond the no-cloning theorem [J].
Buzek, V ;
Hillery, M .
PHYSICAL REVIEW A, 1996, 54 (03) :1844-1852
[8]   An integrated space-to-ground quantum communication network over 4,600 kilometres [J].
Chen, Yu-Ao ;
Zhang, Qiang ;
Chen, Teng-Yun ;
Cai, Wen-Qi ;
Liao, Sheng-Kai ;
Zhang, Jun ;
Chen, Kai ;
Yin, Juan ;
Ren, Ji-Gang ;
Chen, Zhu ;
Han, Sheng-Long ;
Yu, Qing ;
Liang, Ken ;
Zhou, Fei ;
Yuan, Xiao ;
Zhao, Mei-Sheng ;
Wang, Tian-Yin ;
Jiang, Xiao ;
Zhang, Liang ;
Liu, Wei-Yue ;
Li, Yang ;
Shen, Qi ;
Cao, Yuan ;
Lu, Chao-Yang ;
Shu, Rong ;
Wang, Jian-Yu ;
Li, Li ;
Liu, Nai-Le ;
Xu, Feihu ;
Wang, Xiang-Bin ;
Peng, Cheng-Zhi ;
Pan, Jian-Wei .
NATURE, 2021, 589 (7841) :214-+
[9]   Enzyme immobilization: an overview on techniques and support materials [J].
Datta, Sumitra ;
Christena, L. Rene ;
Rajaram, Yamuna Rani Sriramulu .
3 BIOTECH, 2013, 3 (01) :1-9
[10]   Lifetime maximization routing with network coding in wireless multihop networks [J].
Ding LiangHui ;
Wu Ping ;
Wang Hao ;
Pan ZhiWen ;
You XiaoHu .
SCIENCE CHINA-INFORMATION SCIENCES, 2013, 56 (02) :137-151