HGGN: Prediction of microRNA-Mediated drug sensitivity based on interpretable heterogeneous graph global-attention network

被引:0
作者
Liu, Junliang [1 ]
Zhao, Xinbo [2 ]
Jia, Yuran [1 ]
Wang, Sicong [3 ]
Zhao, Tianyi [4 ,5 ]
机构
[1] Harbin Inst Technol, Inst Bioinformat, Sch Comp Sci & Technol, Harbin 150040, Peoples R China
[2] Harbin Med Univ, Affiliated Hosp 1, Dept Cardiol, Harbin 150001, Peoples R China
[3] Harbin Inst Technol, Harbin 150040, Peoples R China
[4] Harbin Inst Technol, Sch Med & Hlth, Harbin 150040, Peoples R China
[5] Harbin Inst Technol, Zhengzhou Res Inst, Zhengzhou 450000, Peoples R China
来源
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE | 2024年 / 160卷
基金
国家重点研发计划;
关键词
MiRNA-drug sensitivity; Heterogeneous network; Global attention; Interpretable; BREAST-CANCER; RESISTANCE; MIRNAS; BIOMARKERS;
D O I
10.1016/j.future.2024.06.010
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Drug sensitivity significantly influences therapeutic outcomes. Recent discoveries have highlighted the pivotal role of miRNAs in regulating drug sensitivity by modulating genes associated with drug metabolism and action. As crucial regulators of gene expression, miRNAs have emerged as influential factors in determining an individual's response to pharmaceutical interventions. However, current methods for predicting miRNA-drug sensitivity associations overlook the challenges posed by heterogeneous networks and data sparsity. In this paper, we design a dual-channel feature representation strategy for heterogeneous networks and construct HGGN, an interpretable deep learning framework designed to predict miRNA-drug sensitivity associations. HGGN advances beyond traditional approaches by employing a unique dual-channel feature extraction method for miRNAs and drugs, enhancing information retrieval from miRNA-drug networks. It incorporates a Global Attention mechanism to overcome feature propagation interruption in sparse networks. Our experiments on public datasets demonstrate HGGN's superior prediction accuracy over existing methods. The AUC and AUPR metrics of HGGN reached 0.9649 and 0.9610 respectively, and the Accuracy, Precision, Recall and F1 metrics were all above 0.9. We constructed the model toward different negative sample selection strategies with an accuracy gap of less than 1%, which proves the robustness of HGGN. Additionally, HGGN's application in modeling analyses and case studies reveals hidden miRNA-mediated drug sensitivity pathways, showcasing its potential for exploratory analysis.
引用
收藏
页码:274 / 282
页数:9
相关论文
共 46 条
  • [1] Berger B, 2021, IEEE T INFORM THEORY, V67, P3287, DOI [10.1109/TIT.2020.2996543, 10.1109/tit.2020.2996543]
  • [2] miR-34a regulates cisplatin-induce gastric cancer cell death by modulating PI3K/AKT/survivin pathway
    Cao, Weiguo
    Yang, Weiping
    Fan, Rong
    Li, Hao
    Jiang, Jinsong
    Geng, Mei
    Jin, Yening
    Wu, Yunlin
    [J]. TUMOR BIOLOGY, 2014, 35 (02) : 1287 - 1295
  • [3] miR-21-5p Suppressed the Sensitivity of Hepatocellular Carcinoma Cells to Cisplatin by Targeting FASLG
    Chen, Shifeng
    Yang, Chunyun
    Sun, Chengming
    Sun, Yong
    Yang, Zongjun
    Cheng, Shaoyun
    Zhuge, Baozhong
    [J]. DNA AND CELL BIOLOGY, 2019, 38 (08) : 865 - 873
  • [4] miR-93 and PTEN: Key regulators of doxorubicin-resistance and EMT in breast cancer
    Chu, Shihua
    Liu, Geng
    Xia, Peixuan
    Chen, Guoqing
    Shi, Feng
    Yi, Tao
    Zhou, Hongying
    [J]. ONCOLOGY REPORTS, 2017, 38 (04) : 2401 - 2407
  • [5] ncDR: a comprehensive resource of non-coding RNAs involved in drug resistance
    Dai, Enyu
    Yang, Feng
    Wang, Jing
    Zhou, Xu
    Song, Qian
    An, Weiwei
    Wang, Lihong
    Jiang, Wei
    [J]. BIOINFORMATICS, 2017, 33 (24) : 4010 - 4011
  • [6] Dual-Channel Heterogeneous Graph Neural Network for Predicting microRNA-Mediated Drug Sensitivity
    Deng, Lei
    Fan, Ziyu
    Xiao, Xiaojun
    Liu, Hui
    Zhang, Jiaxuan
    [J]. JOURNAL OF CHEMICAL INFORMATION AND MODELING, 2022, 62 (23) : 5929 - 5937
  • [7] miR-15b modulates multidrug resistance in human osteosarcoma in vitro and in vivo
    Duan, Zhenfeng
    Gao, Yan
    Shen, Jacson
    Choy, Edwin
    Cote, Gregory
    Harmon, David
    Bernstein, Karen
    Lozano-Calderon, Santiago
    Mankin, Henry
    Hornicek, Francis J.
    [J]. MOLECULAR ONCOLOGY, 2017, 11 (02): : 151 - 166
  • [8] miRNAs driving diagnosis, progression, and drug resistance in multiple myeloma
    Elkady, Mohamed A.
    Yehia, Amr Mohamed
    Elsakka, Elsayed G. E.
    Abulsoud, Ahmed I.
    Abdelmaksoud, Nourhan M.
    Elshafei, Ahmed
    Elkhawaga, Samy Y.
    Ismail, Ahmed
    Mokhtar, Mahmoud Mohamed
    El-Mahdy, Hesham A.
    Hegazy, Maghawry
    Elballal, Mohammed S.
    Mohammed, Osama A.
    El-Husseiny, Hussein M.
    Midan, Heba M.
    El-Dakroury, Walaa A.
    Zewail, Moataz B.
    Mageed, Sherif S. Abdel
    Doghish, Ahmed S.
    [J]. PATHOLOGY RESEARCH AND PRACTICE, 2023, 248
  • [9] The Role of miRNA-7 in the Biology of Cancer and Modulation of Drug Resistance
    Gajda, Ewa
    Grzanka, Malgorzata
    Godlewska, Marlena
    Gawel, Damian
    [J]. PHARMACEUTICALS, 2021, 14 (02) : 1 - 24
  • [10] MicroRNAs in cancer drug resistance: Basic evidence and clinical applications
    Ghasabi, Mehri
    Mansoori, Behzad
    Mohammadi, Ali
    Duijf, Pascal H. G.
    Shomali, Navid
    Shirafkan, Naghmeh
    Mokhtarzadeh, Ahad
    Baradaran, Behzad
    [J]. JOURNAL OF CELLULAR PHYSIOLOGY, 2019, 234 (03) : 2152 - 2168