A note on the persistence of multiplicity of eigenvalues of fractional Laplacian under perturbations

被引:0
|
作者
Ghimenti, Marco [1 ]
Micheletti, Anna Maria [1 ]
Pistoia, Angela [2 ]
机构
[1] Univ Pisa, Dipartimento Matemat, Largo Bruno Pontecorvo 5, I-56127 Pisa, Italy
[2] Univ Roma La Sapienza, Dipartimento SBAI, Via Antonio Scarpa 16, I-00161 Pisa, Italy
关键词
Eigenvalues; Fractional Laplacian; Generic properties; Simplicity; VARIATIONAL ELLIPTIC OPERATOR;
D O I
10.1016/j.na.2024.113558
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the eigenvalue problem for the fractional Laplacian (-Delta)(s), s is an element of (0, 1), in a bounded domain Omega with Dirichlet boundary condition. A recent result (see Fall et al., 2023) states that, under generic small perturbations of the coefficient of the equation or of the domain Omega , all the eigenvalues are simple. In this paper we give a condition for which a perturbation of the coefficient or of the domain preserves the multiplicity of a given eigenvalue. Also, in the case of an eigenvalue of multiplicity v = 2 we prove that the set of perturbations of the coefficients which preserve the multiplicity is a smooth manifold of codimension 2 in C-1(R-n) .
引用
收藏
页数:7
相关论文
共 50 条
  • [1] A note on switching eigenvalues under small perturbations
    Masioti, Marina
    S. N. Li-Wai-Suen, Connie
    A. Prendergast, Luke
    Shaker, Amanda
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (20) : 7311 - 7325
  • [2] Lower bounds for fractional Laplacian eigenvalues
    Wei, Guoxin
    Sun, He-Jun
    Zeng, Lingzhong
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2014, 16 (06)
  • [3] BOUNDS FOR THE EIGENVALUES OF THE FRACTIONAL LAPLACIAN
    Yolcu, Selma Yildirim
    Yolcu, Tuerkay
    REVIEWS IN MATHEMATICAL PHYSICS, 2012, 24 (03)
  • [4] On simple eigenvalues of the fractional Laplacian under removal of small fractional capacity sets
    Abatangelo, Laura
    Felli, Veronica
    Noris, Benedetta
    COMMUNICATIONS IN CONTEMPORARY MATHEMATICS, 2020, 22 (08)
  • [5] Generic properties of eigenvalues of the fractional Laplacian
    Fall, Mouhamed Moustapha
    Ghimenti, Marco
    Micheletti, Anna Maria
    Pistoia, Angela
    CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2023, 62 (08)
  • [6] Existence and multiplicity results for the fractional Laplacian in bounded domains
    Mugnai, Dimitri
    Pagliardini, Dayana
    ADVANCES IN CALCULUS OF VARIATIONS, 2017, 10 (02) : 111 - 124
  • [7] Fractional calculus for power functions and eigenvalues of the fractional Laplacian
    Dyda, Bartlomiej
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2012, 15 (04) : 536 - 555
  • [8] Fractional calculus for power functions and eigenvalues of the fractional Laplacian
    Bartłlomiej Dyda
    Fractional Calculus and Applied Analysis, 2012, 15 : 536 - 555
  • [9] On the Persistence of the Eigenvalues of a Perturbed Fredholm Operator of Index Zero under Nonsmooth Perturbations
    Benevieri, Pierluigi
    Calamai, Alessandro
    Furi, Massimo
    Pera, Maria Patrizia
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2017, 36 (01): : 99 - 128
  • [10] A Note on the Signless Laplacian and Distance Signless Laplacian Eigenvalues of Graphs
    Fenglei TIAN
    Xiaoming LI
    Jianling ROU
    JournalofMathematicalResearchwithApplications, 2014, 34 (06) : 647 - 654