Improvements of weaned pigs barn hygiene to reduce the spread of antimicrobial resistance

被引:3
作者
Jaleta, Megarsa [1 ,2 ]
Junker, Vera [3 ]
Kolte, Baban [3 ,4 ]
Boerger, Maria [5 ]
Werner, Doreen [5 ]
Dolsdorf, Claudia [6 ]
Schwenker, Julia [7 ]
Hoelzel, Christina [7 ]
Zentek, Juergen [8 ]
Amon, Thomas [1 ,9 ]
Nuebel, Ulrich [3 ,4 ,10 ]
Kabelitz, Tina [1 ]
机构
[1] Leibniz Inst Agr Engn & Bioecon ATB, Potsdam, Germany
[2] Free Univ Berlin, Dahlem Res Sch, Berlin, Germany
[3] Leibniz Inst DSMZ, German Collect Microorganisms & Cell Cultures, Braunschweig, Germany
[4] Tech Univ Carolo Wilhelmina Braunschweig, Inst Microbiol, Braunschweig, Germany
[5] Leibniz Ctr Agr Landscape Res ZALF, Muncheberg, Germany
[6] Teaching & Res Stn Anim Breeding & Husb LVAT, Ruhlsdorf, Germany
[7] Christian Albrechts Univ Kiel, Fac Agr & Nutr Sci, Kiel, Germany
[8] Free Univ Berlin, Inst Anim Nutr, Berlin, Germany
[9] Free Univ Berlin, Inst Anim Hyg & Environm Hlth ITU, Berlin, Germany
[10] German Ctr Infect Res DZIF, Partner Site Braunschweig Hannover, Braunschweig, Germany
关键词
AMR; cultivation; disinfection; Escherichia coli; hygiene; pig; weaner barn; ESCHERICHIA-COLI; ANTIBIOTIC-RESISTANCE; E.-COLI; MICROBIOTA; DISINFECTANTS; SURVEILLANCE; BIOSECURITY; INDICATOR; GENES; FLIES;
D O I
10.3389/fmicb.2024.1393923
中图分类号
Q93 [微生物学];
学科分类号
071005 ; 100705 ;
摘要
The spread of antimicrobial resistance (AMR) in animal husbandry is usually attributed to the use of antibiotics and poor hygiene and biosecurity. We therefore conducted experimental trials to improve hygiene management in weaned pig houses and assessed the impact on the spread. For each of the two groups examined, the experimental group (EG) and the control group (CG), three replicate batches of piglets from the same pig breeder, kept in pre-cleaned flat decks, were analyzed. In the flat decks of the experimental groups, the hygiene conditions (cleaning, disinfection, dust removal and fly control) were improved, while regular hygiene measures were carried out in the control groups. The occurrence and spread of AMR were determined in Escherichia coli (E. coli; resistance indicator) using cultivation-dependent (CFU) and -independent (qPCR) methods as well as whole genome sequencing of isolates in samples of various origins, including feces, flies, feed, dust and swabs. Surprisingly, there were no significant differences (p > 0.05) in the prevalence of resistant E. coli between the flat decks managed with conventional techniques and those managed with improved techniques. Selective cultivation delivered ampicillin- and sulfonamide-resistant E. coli proportions of up to 100% and 1.2%, respectively. While 0.5% E. coli resistant to cefotaxime and no ciprofloxacin resistance were detected. There was a significant difference (p < 0.01) in the abundance of the bla(TEM-1) gene in fecal samples between EG and CG groups. The colonization of piglets with resistant pathogens before arrival, the movement of flies in the barn and the treatment of bacterial infections with antibiotics obscured the effects of hygiene improvement. Biocide tolerance tests showed no development of resistance to the farm regular disinfectant. Managing hygiene alone was insufficient for reducing antimicrobial resistances in piglet rearing. We conclude that the complex factors contributing to the presence and distribution of AMR in piglet barns underscore the necessity for a comprehensive management strategy.
引用
收藏
页数:13
相关论文
共 78 条
[1]  
Aarestrup Frank M., 2008, Animal Health Research Reviews, V9, P135, DOI 10.1017/S1466252308001503
[2]   Exploring Farmers' Reasons for Antibiotic Use and Misuse in Pig Farms in Brazil [J].
Albernaz-Goncalves, Rita ;
Olmos, Gabriela ;
Hotzel, Maria Jose .
ANTIBIOTICS-BASEL, 2021, 10 (03)
[3]   CARD 2023: expanded curation, support for machine learning, and resistome prediction at the Comprehensive Antibiotic Resistance Database [J].
Alcock, Brian P. ;
Huynh, William ;
Chalil, Romeo ;
Smith, Keaton W. ;
Raphenya, Amogelang R. ;
Wlodarski, Mateusz A. ;
Edalatmand, Arman ;
Petkau, Aaron ;
Syed, Sohaib A. ;
Tsang, Kara K. ;
Baker, Sheridan J. C. ;
Dave, Mugdha ;
McCarthy, Madeline C. ;
Mukiri, Karyn M. ;
Nasir, Jalees A. ;
Golbon, Bahar ;
Imtiaz, Hamna ;
Jiang, Xingjian ;
Kaur, Komal ;
Kwong, Megan ;
Liang, Zi Cheng ;
Niu, Keyu C. ;
Shan, Prabakar ;
Yang, Jasmine Y. J. ;
Gray, Kristen L. ;
Hoad, Gemma R. ;
Jia, Baofeng ;
Bhando, Timsy ;
Carfrae, Lindsey A. ;
Farha, Maya A. ;
French, Shawn ;
Gordzevich, Rodion ;
Rachwalski, Kenneth ;
Tu, Megan M. ;
Bordeleau, Emily ;
Dooley, Damion ;
Griffiths, Emma ;
Zubyk, Haley L. ;
Brown, Eric D. ;
Maguire, Finlay ;
Beiko, Robert G. ;
Hsiao, William W. L. ;
Brinkman, Fiona S. L. ;
Van Domselaar, Gary ;
McArthur, Andrew G. .
NUCLEIC ACIDS RESEARCH, 2023, 51 (D1) :D690-D699
[4]   The potential of using E. coli as an indicator for the surveillance of antimicrobial resistance (AMR) in the environment [J].
Anjum, Muna F. ;
Schmitt, Heike ;
Boerjesson, Stefan ;
Berendonk, Thomas U. ;
Stehling, Eliana Guedes ;
Boerlin, Patrick ;
Topp, Edward ;
Jardine, Claire ;
Li, Xuewen ;
Li, Bing ;
Dolejska, Monika ;
Madec, Jean-Yves ;
Dagot, Christophe ;
Guenther, Sebastian ;
Walsh, Fiona ;
Villa, Laura ;
Veldman, Kees ;
Sunde, Marianne ;
Krzeminski, Pawel ;
Wasyl, Dariusz ;
Popowska, Magdalena ;
Jaerhult, Josef ;
Oern, Stefan ;
Mahjoub, Olfa ;
Mansour, Wejdene ;
Thai, Dinh Nho ;
Elving, Josefine ;
Pedersen, Karl .
CURRENT OPINION IN MICROBIOLOGY, 2021, 64 :152-158
[5]  
[Anonymous], 2015, Performance standards for antimicrobial disk and dilution susceptibility tests for bacteria isolated from animals, V3rd
[6]   Evaluating the contribution of antimicrobial use in farmed animals to global antimicrobial resistance in humans [J].
Ardakani, Zahra ;
Canali, Massimo ;
Aragrande, Maurizio ;
Tomassone, Laura ;
Simoes, Margarida ;
Balzani, Agnese ;
Beber, Caetano Luiz .
ONE HEALTH, 2023, 17
[7]   Spread of antimicrobial resistance genes via pig manure from organic and conventional farms in the presence or absence of antibiotic use [J].
Bassitta, Rupert ;
Nottensteiner, Annika ;
Bauer, Johann ;
Straubinger, Reinhard K. ;
Hoelzel, Christina S. .
JOURNAL OF APPLIED MICROBIOLOGY, 2022, 133 (04) :2457-2465
[8]   Inexpensive Multiplexed Library Preparation for Megabase-Sized Genomes [J].
Baym, Michael ;
Kryazhimskiy, Sergey ;
Lieberman, Tami D. ;
Chung, Hattie ;
Desai, Michael M. ;
Kishony, Roy .
PLOS ONE, 2015, 10 (05)
[9]   Bacterial genome sequencing tracks the housefly-associated dispersal of fluoroquinolone- and cephalosporin-resistant Escherichia coli from a pig farm [J].
Behrens, Wiebke ;
Kolte, Baban ;
Junker, Vera ;
Frentrup, Martinique ;
Dolsdorf, Claudia ;
Boerger, Maria ;
Jaleta, Megarsa ;
Kabelitz, Tina ;
Amon, Thomas ;
Werner, Doreen ;
Nuebel, Ulrich .
ENVIRONMENTAL MICROBIOLOGY, 2023, 25 (06) :1174-1185
[10]   Overview of Evidence of Antimicrobial Use and Antimicrobial Resistance in the Food Chain [J].
Bennani, Houda ;
Mateus, Ana ;
Mays, Nicholas ;
Eastmure, Elizabeth ;
Staerk, Katharina D. C. ;
Hasler, Barbara .
ANTIBIOTICS-BASEL, 2020, 9 (02)