Semi-automated protocol to quantify and characterize fluorescent three-dimensional vascular images

被引:0
|
作者
Xie, Danny F. [1 ,2 ]
Crouzet, Christian [1 ,2 ]
Lopresti, Krystal [1 ,2 ]
Wang, Yuke [1 ,2 ]
Robinson, Christopher [1 ,2 ]
Jones, William [1 ]
Muqolli, Fjolla [1 ]
Fang, Chuo [3 ]
Cribbs, David H. [4 ]
Fisher, Mark [1 ,3 ,4 ,5 ]
Choi, Bernard [1 ,2 ]
机构
[1] Univ Calif Irvine, Beckman Laser Inst & Med Clin, Irvine, CA 92612 USA
[2] Univ Calif Irvine, Dept Biomed Engn, Irvine, CA 92612 USA
[3] Univ Calif Irvine, Dept Neurol, Irvine, CA USA
[4] Univ Calif Irvine, Inst Memory Impairments & Neurol Disorders, Irvine, CA USA
[5] Univ Calif Irvine, Dept Pathol & Lab Med, Irvine, CA USA
来源
PLOS ONE | 2024年 / 19卷 / 05期
基金
美国国家卫生研究院;
关键词
3D VISUALIZATION; TISSUE; IDISCO; MICROBLEEDS;
D O I
10.1371/journal.pone.0289109
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
The microvasculature facilitates gas exchange, provides nutrients to cells, and regulates blood flow in response to stimuli. Vascular abnormalities are an indicator of pathology for various conditions, such as compromised vessel integrity in small vessel disease and angiogenesis in tumors. Traditional immunohistochemistry enables the visualization of tissue cross-sections containing exogenously labeled vasculature. Although this approach can be utilized to quantify vascular changes within small fields of view, it is not a practical way to study the vasculature on the scale of whole organs. Three-dimensional (3D) imaging presents a more appropriate method to visualize the vascular architecture in tissue. Here we describe the complete protocol that we use to characterize the vasculature of different organs in mice encompassing the methods to fluorescently label vessels, optically clear tissue, collect 3D vascular images, and quantify these vascular images with a semi-automated approach. To validate the automated segmentation of vascular images, one user manually segmented one hundred random regions of interest across different vascular images. The automated segmentation results had an average sensitivity of 83 +/- 11% and an average specificity of 91 +/- 6% when compared to manual segmentation. Applying this procedure of image analysis presents a method to reliably quantify and characterize vascular networks in a timely fashion. This procedure is also applicable to other methods of tissue clearing and vascular labels that generate 3D images of microvasculature.
引用
收藏
页数:14
相关论文
共 50 条
  • [41] A semi-automated vascular access system for preclinical models
    Berry-Pusey, B. N.
    Chang, Y. C.
    Prince, S. W.
    Chu, K.
    David, J.
    Taschereau, R.
    Silverman, R. W.
    Williams, D.
    Ladno, W.
    Stout, D.
    Tsao, T. C.
    Chatziioannou, A.
    PHYSICS IN MEDICINE AND BIOLOGY, 2013, 58 (16): : 5351 - 5362
  • [42] Semi-automated left ventricular function assessment by real-time three-dimensional echocardiography is ready for prime time
    Soliman, O. I. I.
    Van Dalen, B. M.
    Geleijnse, M. L.
    Vletter, W. B.
    Al-Amin, A. M.
    Ten Cate, F. J.
    EUROPEAN HEART JOURNAL, 2009, 30 : 342 - 342
  • [43] Semi-automated segmentation of dual echo MR images
    Petropoulos, H
    Sibbitt, WL
    Brooks, WM
    PROCEEDINGS OF THE 20TH ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY, VOL 20, PTS 1-6: BIOMEDICAL ENGINEERING TOWARDS THE YEAR 2000 AND BEYOND, 1998, 20 : 602 - 604
  • [44] Automated three-dimensional tracing of neurons in confocal and brightfield images
    He, W
    Hamilton, TA
    Cohen, AR
    Holmes, TJ
    Pace, C
    Szarowski, DH
    Turner, JN
    Roysam, B
    MICROSCOPY AND MICROANALYSIS, 2003, 9 (04) : 296 - 310
  • [45] Automated quality assessment in three-dimensional breast ultrasound images
    Schwaab, Julia
    Diez, Yago
    Oliver, Arnau
    Marti, Robert
    van Zelst, Jan
    Gubern-Merida, Albert
    Mourri, Ahmed Bensouda
    Gregori, Johannes
    Guenther, Matthias
    JOURNAL OF MEDICAL IMAGING, 2016, 3 (02)
  • [46] An Automated Approach for Kidney Segmentation in Three-Dimensional Ultrasound Images
    Marsousi, Mahdi
    Plataniotis, Konstantinos N.
    Stergiopoulos, Stergios
    IEEE JOURNAL OF BIOMEDICAL AND HEALTH INFORMATICS, 2017, 21 (04) : 1079 - 1094
  • [47] An automated segmentation method for three-dimensional carotid ultrasound images
    Zahalka, A
    Fenster, A
    PHYSICS IN MEDICINE AND BIOLOGY, 2001, 46 (04): : 1321 - 1342
  • [48] A new automated method for three-dimensional registration of medical images
    Kotsas, P
    Strintzis, M
    Piraino, DW
    SIMULATIONS IN BIOMEDICINE IV, 1997, : 337 - 346
  • [49] Semi-automated estimation of left ventricular ejection fraction by two-dimensional and three-dimensional echocardiography is feasible, time-efficient, and reproducible
    Myhr, Katrine A.
    Pedersen, Frederik H. G.
    Kristensen, Charlotte B.
    Visby, Lasse
    Hassager, Christian
    Mogelvang, Rasmus
    ECHOCARDIOGRAPHY-A JOURNAL OF CARDIOVASCULAR ULTRASOUND AND ALLIED TECHNIQUES, 2018, 35 (11): : 1795 - 1805
  • [50] Reproducibility of Semi-automated Three-dimensional Volumetric Analysis using Cardiac Computed Tomography in Patients With Left Ventricular Assist Device
    Gill, Gauravpal S.
    Weissman, Gaby
    Meirovich, Yael F.
    Medvedofsky, Diego
    Mohammed, Selma F.
    Waksman, Ron
    Garcia-Garcia, Hector M.
    CARDIOVASCULAR REVASCULARIZATION MEDICINE, 2019, 20 (05) : 381 - 386