Genome-Wide Identification of the TGA Gene Family and Expression Analysis under Drought Stress in Brassica napus L.

被引:0
|
作者
Duan, Yi [1 ]
Xu, Zishu [1 ]
Liu, Hui [2 ]
Wang, Yanhui [3 ]
Zou, Xudong [3 ]
Zhang, Zhi [3 ]
Xu, Ling [1 ]
Xu, Mingchao [3 ]
机构
[1] Zhejiang Sci Tech Univ, Coll Life Sci & Med, Hangzhou 310018, Peoples R China
[2] Univ Western Australia, Inst Agr, Crawley, WA 6009, Australia
[3] Leshan Acad Agr Sci, Leshan 614000, Peoples R China
关键词
Brassica napus L; TGA transcription factor; bZIP; expression patterns; gene family; BZIP TRANSCRIPTION FACTOR; ABIOTIC STRESSES; PLANT DEFENSE; SCLEROTINIA-SCLEROTIORUM; SALICYLIC-ACID; RESISTANCE; RESPONSES; REVEALS; BINDING; ROLES;
D O I
10.3390/ijms25126355
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
TGA transcription factors belong to Group D of the bZIP transcription factors family and play vital roles in the stress response of plants. Brassica napus is an oil crop with rich economic value. However, a systematic analysis of TGA gene family members in B. napus has not yet been reported. In this study, we identified 39 full-length TGA genes in B. napus, renamed TGA1 similar to TGA39. Thirty-nine BnTGA genes were distributed on 18 chromosomes, mainly located in the nucleus, and differences were observed in their 3D structures. Phylogenetic analysis showed that 39 BnTGA genes could be divided into five groups. The BnTGA genes in the same group had similar structure and motif compositions, and all the BnTGA genes had the same conserved bZIP and DOG1 domains. Phylogenetic and synteny analysis showed that the BnTGA genes had a close genetic relationship with the TGA genes of the Brassica juncea, and BnTGA11 and BnTGA29 may play an important role in evolution. In addition, qRT-PCR revealed that three genes (BnTGA14/17/23) showed significant changes in eight experimental materials after drought treatment. Meanwhile, it can be inferred from the results of drought treatment on different varieties of rapeseed that the stress tolerance of parental rapeseed can be transmitted to the offspring through hybridization. In short, these findings have promoted the understanding of the B. napus TGA gene family and will contribute to future research aimed at B. napus resistant breeding.
引用
收藏
页数:21
相关论文
共 50 条
  • [1] Genome-Wide Identification of the LAC Gene Family and Its Expression Analysis Under Stress in Brassica napus
    Ping, Xiaoke
    Wang, Tengyue
    Lin, Na
    Di, Feifei
    Li, Yangyang
    Jian, Hongju
    Wang, Hao
    Lu, Kun
    Li, Jiana
    Xu, Xinfu
    Liu, Liezhao
    MOLECULES, 2019, 24 (10):
  • [2] Genome-wide identification, evolution, and expression analysis of HVA22 gene family in Brassica napus L.
    Wang, Ping
    Wang, Lirong
    GENETIC RESOURCES AND CROP EVOLUTION, 2025,
  • [3] Identification, evolution and expression analyses of the whole genome-wide PEBP gene family in Brassica napus L.
    Li, Yanling
    Xiao, Lu
    Zhao, Zhi
    Zhao, Hongping
    Du, Dezhi
    BMC GENOMIC DATA, 2023, 24 (01):
  • [4] The CDPK Gene Family in Mustard (Brassica juncea L.): Genome-Wide Identification and Expression Analysis under Cold Stress
    Li, Haibo
    Wu, Hao
    Huang, Weifeng
    Liu, Jiaxian
    Deng, Jiaxin
    Li, Chuanhong
    Mao, Cui
    Zhang, Yang
    Wang, Yukun
    Zheng, Jie
    HORTICULTURAE, 2024, 10 (01)
  • [5] Identification, evolution and expression analyses of the whole genome-wide PEBP gene family in Brassica napus L.
    Yanling Li
    Lu Xiao
    Zhi Zhao
    Hongping Zhao
    Dezhi Du
    BMC Genomic Data, 24
  • [6] Genome-wide identification and expression analysis of the chlorophyll a/b binding protein gene family in oilseed (Brassica napus L.) under salt stress conditions
    Xue, Tianyuan
    Wan, Heping
    Chen, Jingdong
    He, Sixiao
    Lujin, Chunzi
    Xia, Mang
    Wang, Shanshan
    Dai, Xigang
    Zeng, Changli
    PLANT STRESS, 2024, 11
  • [7] Genome-Wide Identification and Characterization of the CCT Gene Family in Rapeseed (Brassica napus L.)
    Yu, Liyiqi
    Xia, Jichun
    Jiang, Rujiao
    Wang, Jiajia
    Yuan, Xiaolong
    Dong, Xinchao
    Chen, Zhenjie
    Zhao, Zizheng
    Wu, Boen
    Zhan, Lanlan
    Zhang, Ranfeng
    Tang, Kang
    Li, Jiana
    Xu, Xinfu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (10)
  • [8] Genome-wide and transcriptome-wide identification of the APX gene family in rapeseed(Brassica napus L.) and their expression features under low temperature stress
    Xuan Sun
    Guomei Liu
    Lin Yao
    Chunfang Du
    Oil Crop Science, 2023, 8 (04) : 259 - 265
  • [9] Genome-Wide Identification of NDPK Family Genes and Expression Analysis under Abiotic Stress in Brassica napus
    Wang, Long
    Zhao, Zhi
    Li, Huaxin
    Pei, Damei
    Huang, Zhen
    Wang, Hongyan
    Xiao, Lu
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (12)
  • [10] Genome-wide analysis and expression profiling of the HMA gene family in Brassica napus under cd stress
    Li, Nannan
    Xiao, Hua
    Sun, Juanjuan
    Wang, Shufeng
    Wang, Jingchao
    Chang, Peng
    Zhou, Xinbin
    Lei, Bo
    Lu, Kun
    Luo, Feng
    Shi, Xiaojun
    Li, Jiana
    PLANT AND SOIL, 2018, 426 (1-2) : 365 - 381