An adaptive biased random-key genetic algorithm for the tactical berth allocation problem

被引:1
作者
Chaves, Antonio A. [1 ]
Oliveira, Rudinei M. [2 ]
Goncalves, Jose F. [3 ,4 ]
Lorena, Luiz A. N. [1 ]
机构
[1] Univ Fed Sao Paulo, Sao Jose Dos Campos, Brazil
[2] Univ Estado Minas Gerais, Joao Monlevade, Brazil
[3] Univ Porto, INESC TEC, Porto, Portugal
[4] Univ Porto, Fac Econ, Porto, Portugal
来源
39TH ANNUAL ACM SYMPOSIUM ON APPLIED COMPUTING, SAC 2024 | 2024年
基金
巴西圣保罗研究基金会;
关键词
Metaheuristics; Genetic Algorithms; Parameter control; Berth Allocation; QUAY CRANE ASSIGNMENT; OPTIMIZATION APPROACH; OPERATIONS-RESEARCH; SEARCH; LOGISTICS; MODELS;
D O I
10.1145/3605098.3635993
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
The Tactical Berth Allocation Problem (TBAP) is an integrated solution approach for berth allocation and quay crane assignment in container terminal operations. TBAP aims to allocate ships to berthing positions and assign them to quay crane profiles with some quay cranes per time step. The objectives are to maximize the total value of the quay crane profiles assigned to ships and minimize the housekeeping costs derived from the transshipment container flows between ships. In this research paper, we develop an adaptive Biased Random-Key Genetic Algorithm (A-BRKGA) to solve the TBAP. The A-BRKGA is a recent method with online parameter control, so users have no visible parameters. The strategy for parameter adapting is based on deterministic rules and self-adaptive schemes. Computational results show that the A-BRKGA is competitive with the current state-of-the-art methods and can find the best-known solutions for most tested instances.
引用
收藏
页码:378 / 385
页数:8
相关论文
共 31 条
[1]   MIP approaches for the integrated berth allocation and quay crane assignment and scheduling problem [J].
Agra, Agostinho ;
Oliveira, Maryse .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2018, 264 (01) :138-148
[2]   A follow-up survey of berth allocation and quay crane scheduling problems in container terminals [J].
Bierwirth, Christian ;
Meisel, Frank .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2015, 244 (03) :675-689
[3]   A survey of berth allocation and quay crane scheduling problems in container terminals [J].
Bierwirth, Christian ;
Meisel, Frank .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2010, 202 (03) :615-627
[4]   Adaptive biased random-key genetic algorithm with local search for the capacitated centered clustering problem [J].
Chaves, Antonio Augusto ;
Goncalves, Jose Fernando ;
Nogueira Lorena, Luiz Antonio .
COMPUTERS & INDUSTRIAL ENGINEERING, 2018, 124 :331-346
[5]   Models and tabu search heuristics for the Berth-allocation problem [J].
Cordeau, JF ;
Laporte, G ;
Legato, P ;
Moccia, L .
TRANSPORTATION SCIENCE, 2005, 39 (04) :526-538
[6]   The multicommodity traveling salesman problem with priority prizes: a mathematical model and metaheuristics [J].
da Silva, Tiago Tiburcio ;
Chaves, Antonio Augusto ;
Yanasse, Horacio Hideki ;
Loureiro Luna, Henrique Pacca .
COMPUTATIONAL & APPLIED MATHEMATICS, 2019, 38 (04)
[7]  
Expósito-Izquierdo C, 2018, STUD FUZZ SOFT COMP, V360, P1, DOI 10.1007/978-3-319-64286-4_1
[8]   Fuzzy Optimization Models for Seaside Port Logistics: Berthing and Quay Crane Scheduling [J].
Exposito-Izquiero, Christopher ;
Lalla-Ruiz, Eduardo ;
Lamata, Teresa ;
Melian-Batista, Belen ;
Marcos Moreno-Vega, J. .
COMPUTATIONAL INTELLIGENCE, IJCCI 2013, 2016, 613 :323-343
[9]   A biased random-key genetic algorithm for the time-invariant berth allocation and quay crane assignment problem [J].
Francisco Correcher, Juan ;
Alvarez-Valdes, Ramon .
EXPERT SYSTEMS WITH APPLICATIONS, 2017, 89 :112-128
[10]   Modeling and solving the Tactical Berth Allocation Problem [J].
Giallombardo, Giovanni ;
Moccia, Luigi ;
Salani, Matteo ;
Vacca, Ilaria .
TRANSPORTATION RESEARCH PART B-METHODOLOGICAL, 2010, 44 (02) :232-245