Global existence of solutions for the drift-diffusion system with large initial data in (B) over dot∞,∞-2 (Rd)

被引:0
作者
Zhao, Jihong [1 ]
Jin, Rong [1 ]
Chen, Hao [1 ]
机构
[1] Baoji Univ Arts & Sci, Sch Math & Informat Sci, Baoji 721013, Shaanxi, Peoples R China
基金
中国国家自然科学基金;
关键词
Drift-diffusion system; Global existence; Large solutions; Besov spaces; LONG-TIME BEHAVIOR; WELL-POSEDNESS; CARRIER TRANSPORT; BASIC EQUATIONS; NERNST-PLANCK; BESOV; DECAY;
D O I
10.1016/j.nonrwa.2024.104145
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the Cauchy problem of the drift-diffusion system arising from semiconductor model. We prove that if a certain nonlinear function of the initial data is small enough, in a Besov type space, then there is a global solution to this drift-diffusion system. We also provide an example of initial data satisfying that nonlinear smallness condition, but whose norm be chosen arbitrarily large in (B) over dot(infinity,infinity)(-2)(R-d).
引用
收藏
页数:10
相关论文
共 27 条
  • [1] Bahouri H, 2011, GRUNDLEHR MATH WISS, V343, P1, DOI 10.1007/978-3-642-16830-7
  • [2] A note on the long time behavior for the drift-diffusion-Poisson system
    Ben Abdallah, N
    Méhats, F
    Vauchelet, N
    [J]. COMPTES RENDUS MATHEMATIQUE, 2004, 339 (10) : 683 - 688
  • [3] THE DEBYE SYSTEM - EXISTENCE AND LARGE TIME BEHAVIOR OF SOLUTIONS
    BILER, P
    HEBISCH, W
    NADZIEJA, T
    [J]. NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1994, 23 (09) : 1189 - 1209
  • [4] Long time behavior of solutions to Nernst-Planck and Debye-Huckel drift-diffusion systems
    Biler, P
    Dolbeault, J
    [J]. ANNALES HENRI POINCARE, 2000, 1 (03): : 461 - 472
  • [5] Global regular and singular solutions for a model of gravitating particles
    Biler, P
    Cannone, M
    Guerra, IA
    Karch, G
    [J]. MATHEMATISCHE ANNALEN, 2004, 330 (04) : 693 - 708
  • [6] Biler P., 1994, Colloq. Math, V67, P297
  • [7] Wellposedness and stability results for the Navier-Stokes equations in R3
    Chemin, Jean-Yves
    Gallagher, Isabelle
    [J]. ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2009, 26 (02): : 599 - 624
  • [8] Largest well-posed spaces for the general diffusion system with nonlocal interactions
    Deng, Chao
    Liu, Chun
    [J]. JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 272 (10) : 4030 - 4062
  • [9] Endpoint bilinear estimates and applications to the two-dimensional Poisson-Nernst-Planck system
    Deng, Chao
    Li, Congming
    [J]. NONLINEARITY, 2013, 26 (11) : 2993 - 3009
  • [10] ON EXISTENCE, UNIQUENESS AND ASYMPTOTIC-BEHAVIOR OF SOLUTIONS OF THE BASIC EQUATIONS FOR CARRIER TRANSPORT IN SEMICONDUCTORS
    GAJEWSKI, H
    [J]. ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND MECHANIK, 1985, 65 (02): : 101 - 108