Sparse Blind Spherical Deconvolution of diffusion weighted MRI

被引:0
|
作者
Fuchs, Clement [1 ]
Dessain, Quentin [1 ,2 ]
Delinte, Nicolas [1 ,2 ]
Dausort, Manon [1 ]
Macq, Benoit [1 ]
机构
[1] UCLouvain, Inst Informat & Commun Technol Elect & Appl Math I, Louvain La Neuve, Belgium
[2] UCLouvain, Inst Neurosci, Brussels, Belgium
关键词
diffusion MRI; spherical deconvolution; white matter; microstructure; multi-fascicle models; MICROSTRUCTURE; DENSITY; ROBUST; QUANTIFICATION; COEFFICIENTS; FRAMEWORK;
D O I
10.3389/fnins.2024.1385975
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Diffusion-weighted magnetic resonance imaging provides invaluable insights into in-vivo neurological pathways. However, accurate and robust characterization of white matter fibers microstructure remains challenging. Widely used spherical deconvolution algorithms retrieve the fiber Orientation Distribution Function (ODF) by using an estimation of a response function, i.e., the signal arising from individual fascicles within a voxel. In this paper, an algorithm of blind spherical deconvolution is proposed, which only assumes the axial symmetry of the response function instead of its exact knowledge. This algorithm provides a method for estimating the peaks of the ODF in a voxel without any explicit response function, as well as a method for estimating signals associated with the peaks of the ODF, regardless of how those peaks were obtained. The two stages of the algorithm are tested on Monte Carlo simulations, as well as compared to state-of-the-art methods on real in-vivo data for the orientation retrieval task. Although the proposed algorithm was shown to attain lower angular errors than the state-of-the-art constrained spherical deconvolution algorithm on synthetic data, it was outperformed by state-of-the-art spherical deconvolution algorithms on in-vivo data. In conjunction with state-of-the art methods for axon bundles direction estimation, the proposed method showed its potential for the derivation of per-voxel per-direction metrics on synthetic as well as in-vivo data.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Sparse wars: A survey and comparative study of spherical deconvolution algorithms for diffusion MRI
    Jorge Canales-Rodriguez, Erick
    Haitz Legarreta, Jon
    Pizzolato, Marco
    Rensonnet, Gaetan
    Girard, Gabriel
    Rafael-Patino, Jonathan
    Barakovic, Muhamed
    Romascano, David
    Aleman-Gomez, Yasser
    Radua, Joaquim
    Pomarol-Clotet, Edith
    Salvador, Raymond
    Thiran, Jean-Philippe
    Daducci, Alessandro
    NEUROIMAGE, 2019, 184 : 140 - 160
  • [2] Recursive calibration of the fiber response function for spherical deconvolution of diffusion MRI data
    Tax, Chantal M. W.
    Jeurissen, Ben
    Vos, Sjoerd B.
    Viergever, Max A.
    Leemans, Alexander
    NEUROIMAGE, 2014, 86 : 67 - 80
  • [3] Model-based denoising in diffusion-weighted imaging using generalized spherical deconvolution
    Sperl, Jonathan I.
    Sprenger, Tim
    Tan, Ek T.
    Menzel, Marion I.
    Hardy, Christopher J.
    Marinelli, Luca
    MAGNETIC RESONANCE IN MEDICINE, 2017, 78 (06) : 2428 - 2438
  • [4] Constrained spherical deconvolution of nonspherically sampled diffusion MRI data
    Morez, Jan
    Sijbers, Jan
    Vanhevel, Floris
    Jeurissen, Ben
    HUMAN BRAIN MAPPING, 2021, 42 (02) : 521 - 538
  • [5] Test-retest reliability and long-term stability of three-tissue constrained spherical deconvolution methods for analyzing diffusion MRI data
    Newman, Benjamin T.
    Dhollander, Thijs
    Reynier, Kristen A.
    Panzer, Matthew B.
    Druzgal, T. Jason
    MAGNETIC RESONANCE IN MEDICINE, 2020, 84 (04) : 2161 - 2173
  • [6] Multi-Tissue Decomposition of Diffusion MRI Signals via l0 Sparse-Group Estimation
    Yap, Pew-Thian
    Zhang, Yong
    Shen, Dinggang
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2016, 25 (09) : 4340 - 4353
  • [7] Multi-tissue constrained spherical deconvolution for improved analysis of multi-shell diffusion MRI data
    Jeurissen, Ben
    Tournier, Jacques-Donald
    Dhollander, Thijs
    Connelly, Alan
    Sijbers, Jan
    NEUROIMAGE, 2014, 103 : 411 - 426
  • [8] Resolving complex fibre architecture by means of sparse spherical deconvolution in the presence of isotropic diffusion
    Zhou, Q.
    Michailovich, O.
    Rathi, Y.
    MEDICAL IMAGING 2014: IMAGE PROCESSING, 2014, 9034
  • [9] A pitfall in the reconstruction of fibre ODFs using spherical deconvolution of diffusion MRI data
    Parker, G. D.
    Marshall, D.
    Rosin, P. L.
    Drage, N.
    Richmond, S.
    Jones, D. K.
    NEUROIMAGE, 2013, 65 : 433 - 448
  • [10] Spherical Deconvolution of Multichannel Diffusion MRI Data with Non-Gaussian Noise Models and Spatial Regularization
    Canales-Rodriguez, Erick J.
    Daducci, Alessandro
    Sotiropoulos, Stamatios N.
    Caruyer, Emmanuel
    Aja-Fernandez, Santiago
    Radua, Joaquim
    Yurramendi Mendizabal, Jesus M.
    Iturria-Medina, Yasser
    Melie-Garcia, Lester
    Aleman-Gomez, Yasser
    Thiran, Jean-Philippe
    Sarro, Salvador
    Pomarol-Clotet, Edith
    Salvador, Raymond
    PLOS ONE, 2015, 10 (10):