Parameter Estimation with Dense and Convolutional Neural Networks Applied to the FitzHugh-Nagumo ODE

被引:0
作者
Rudi, Johann [1 ]
Bessac, Julie [1 ]
Lenzi, Amanda [1 ]
机构
[1] Argonne Natl Lab, Math & Comp Sci Div, Lemont, IL 60439 USA
来源
MATHEMATICAL AND SCIENTIFIC MACHINE LEARNING, VOL 145 | 2021年 / 145卷
关键词
Parameter estimation; Inverse problem; Reconstruction maps; Dense and convolutional neural networks; Nonlinear ordinary differential equation; FitzHugh-Nagumo; INVERSE PROBLEMS; MODEL;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Machine learning algorithms have been successfully used to approximate nonlinear maps under weak assumptions on the structure and properties of the maps. We present deep neural networks using dense and convolutional layers to solve an inverse problem, where we seek to estimate parameters of a FitzHugh-Nagumo model, which consists of a nonlinear system of ordinary differential equations (ODEs). We employ the neural networks to approximate reconstruction maps for model parameter estimation from observational data, where the data comes from the solution of the ODE and takes the form of a time series representing dynamically spiking membrane potential of a biological neuron. We target this dynamical model because of the computational challenges it poses in an inference setting, namely, having a highly nonlinear and nonconvex data misfit term and permitting only weakly informative priors on parameters. These challenges cause traditional optimization to fail and alternative algorithms to exhibit large computational costs. We quantify the prediction errors of model parameters obtained from the neural networks and investigate the effects of network architectures with and without the presence of noise in observational data. We generalize our framework for neural network-based reconstruction maps to simultaneously estimate ODE parameters and parameters of autocorrelated observational noise. Our results demonstrate that deep neural networks have the potential to estimate parameters in dynamical models and stochastic processes, and they are capable of predicting parameters accurately for the FitzHugh-Nagumo model.
引用
收藏
页码:781 / 808
页数:28
相关论文
共 50 条
[1]   Solving ill-posed inverse problems using iterative deep neural networks [J].
Adler, Jonas ;
Oktem, Ozan .
INVERSE PROBLEMS, 2017, 33 (12)
[2]  
Akesson M, 2021, Arxiv, DOI arXiv:2001.11760
[3]   Visualization of currents in neural models with similar behavior and different conductance densities [J].
Alonso, Leandro M. ;
Marder, Eve .
ELIFE, 2019, 8
[4]   An approach to periodic, time-varying parameter estimation using nonlinear filtering [J].
Arnold, Andrea ;
Lloyd, Alun L. .
INVERSE PROBLEMS, 2018, 34 (10)
[5]   Comprehensive benchmarking of Markov chain Monte Carlo methods for dynamical systems [J].
Ballnus, Benjamin ;
Hug, Sabine ;
Hatz, Kathrin ;
Goerlitz, Linus ;
Hasenauer, Jan ;
Theis, Fabian J. .
BMC SYSTEMS BIOLOGY, 2017, 11
[6]   Parameter estimation of the Hodgkin-Huxley model using metaheuristics: application to neuromimetic analog integrated circuits [J].
Buhry, L. ;
Saighi, S. ;
Giremus, A. ;
Grivel, E. ;
Renaud, S. .
2008 IEEE BIOMEDICAL CIRCUITS AND SYSTEMS CONFERENCE - INTELLIGENT BIOMEDICAL SYSTEMS (BIOCAS), 2008, :173-176
[7]  
Calvetti D., 2007, Introduction to Bayesian Scientific Computing: Ten Lectures on Subjective Computing
[8]   Linear and nonlinear ARMA model parameter estimation using an artificial neural network [J].
Chon, KH ;
Cohen, RJ .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 1997, 44 (03) :168-174
[9]   Statistical Treatment of Inverse Problems Constrained by Differential Equations-Based Models with Stochastic Terms [J].
Constantinescu, Emil M. ;
Petra, Noemi ;
Bessac, Julie ;
Petra, Cosmin G. .
SIAM-ASA JOURNAL ON UNCERTAINTY QUANTIFICATION, 2020, 8 (01) :170-197
[10]   The frontier of simulation-based inference [J].
Cranmer, Kyle ;
Brehmer, Johann ;
Louppe, Gilles .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA, 2020, 117 (48) :30055-30062