Prototype-Based Pseudo-Label Refinement for Semi-Supervised Hyperspectral Image Classification

被引:3
作者
Chen, Renyi [1 ,2 ]
Yao, Huaxiong [1 ,2 ]
Chen, Wenjing [3 ]
Sun, Hao [1 ,2 ]
Xie, Wei [1 ,2 ]
Dong, Le [4 ]
Lu, Xiaoqiang [5 ]
机构
[1] Cent China Normal Univ, Sch Comp Sci, Hubei Prov Key Lab Artificial Intelligence & Smart, Wuhan 430079, Peoples R China
[2] Cent China Normal Univ, Natl Language Resources Monitoring & Res Ctr Netwo, Wuhan 430079, Peoples R China
[3] Hubei Univ Technol, Sch Comp Sci, Wuhan 430068, Peoples R China
[4] Xidian Univ, Sch Artificial Intelligence, Xian 710071, Peoples R China
[5] Fuzhou Univ, Coll Phys & Informat Engn, Fuzhou 350002, Peoples R China
基金
中国国家自然科学基金;
关键词
Feature extraction; Prototypes; Training; Learning systems; Hyperspectral imaging; Sun; Geoscience and remote sensing; Class prototype; hyperspectral image (HSI) classification; pseudo-label (PL); semi-supervised learning;
D O I
10.1109/LGRS.2024.3385282
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Pseudo-label (PL) learning-based methods usually regard class confidence above a certain threshold for unlabeled samples as PLs, which may result in PLs still containing wrong labels. In this letter, we propose a prototype-based PL refinement (PPLR) for semi-supervised hyperspectral image (HSI) classification. The proposed PPLR filters wrong labels from PLs using class prototypes, which can improve the discrimination of the network. First, PPLR uses multihead attentions (MHAs) to extract the spectral-spatial features, and designs an adaptive threshold that can be dynamically adjusted to generate high-confidence PLs. Then, PPLR constructs class prototypes for different categories using labeled sample features and unlabeled sample features with refined PLs to improve the quality of PLs by filtering wrong labels. Finally, PPLR further assigns reliable weights (RWs) to these PLs in calculating their supervised loss, and introduces a center loss (CL) to improve the discrimination of features. When ten labeled samples per category are utilized for training, PPLR achieves the overall accuracies of 82.11%, 86.70%, and 92.50% on the Indian Pines (IP), Houston2013, and Salinas datasets, respectively.
引用
收藏
页码:1 / 5
页数:5
相关论文
共 18 条
[1]   SEMI-SUPERVISED GRAPH PROTOTYPICAL NETWORKS FOR HYPERSPECTRAL IMAGE CLASSIFICATION [J].
Xi, Bobo ;
Li, Jiaojiao ;
Li, Yunsong ;
Du, Qian .
2021 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM IGARSS, 2021, :2851-2854
[2]   Deep Quadruple-Based Hashing for Remote Sensing Image-Sound Retrieval [J].
Chen, Yaxiong ;
Xiong, Shengwu ;
Mou, Lichao ;
Zhu, Xiao Xiang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[3]   Deep Cross-Modal ImageVoice Retrieval in Remote Sensing [J].
Chen, Yaxiong ;
Lu, Xiaoqiang ;
Wang, Shuai .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2020, 58 (10) :7049-7061
[4]   SpectralFormer: Rethinking Hyperspectral Image Classification With Transformers [J].
Hong, Danfeng ;
Han, Zhu ;
Yao, Jing ;
Gao, Lianru ;
Zhang, Bing ;
Plaza, Antonio ;
Chanussot, Jocelyn .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[5]   A Semisupervised Siamese Network for Hyperspectral Image Classification [J].
Jia, Sen ;
Jiang, Shuguo ;
Lin, Zhijie ;
Xu, Meng ;
Sun, Weiwei ;
Huang, Qiang ;
Zhu, Jiasong ;
Jia, Xiuping .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[6]   Spectral-Spatial Prototype Learning-Based Nearest Neighbor Classifier for Hyperspectral Images [J].
Li, Dan ;
Shen, Yuan ;
Kong, Fangqiang ;
Liu, Jiahang ;
Wang, Qiang .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2023, 61
[7]   Few-Shot Hyperspectral Image Classification With Unknown Classes Using Multitask Deep Learning [J].
Liu, Shengjie ;
Shi, Qian ;
Zhang, Liangpei .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (06) :5085-5102
[8]   Semisupervised Hyperspectral Image Classification Using a Probabilistic Pseudo-Label Generation Framework [J].
Seydgar, Majid ;
Rahnamayan, Shahryar ;
Ghamisi, Pedram ;
Bidgoli, Azam Asilian .
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2022, 60
[9]   Semi-Supervised Facial Expression Recognition by Exploring False Pseudo-Labels [J].
Sun, Hao ;
Pi, Chenchen ;
Xie, Wei .
2023 IEEE INTERNATIONAL CONFERENCE ON MULTIMEDIA AND EXPO, ICME, 2023, :234-239
[10]   Deep Feature Reconstruction Learning for Open-Set Classification of Remote-Sensing Imagery [J].
Sun, Hao ;
Li, Qianqian ;
Yu, Jie ;
Zhou, Dongbo ;
Chen, Wenjing ;
Zheng, Xiangtao ;
Lu, Xiaoqiang .
IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2023, 20