On the edge metric dimension of some classes of cacti

被引:3
作者
Mhagama, Lyimo Sygbert [1 ,2 ]
Nadeem, Muhammad Faisal [3 ]
Husin, Mohamad Nazri [1 ]
机构
[1] Univ Malaysia Terengganu, Fac Comp Sci & Math, Special Interest Grp Modeling & Data Analyt, Terengganu 21030, Malaysia
[2] Mbeya Univ Sci & Technol, Coll Sci & Tech Educ, Dept Math & Stat, POB 131, Mbeya, Tanzania
[3] COMSATS Univ Islamabad Lahore Campus, Dept Math, Lahore 54000, Pakistan
来源
AIMS MATHEMATICS | 2024年 / 9卷 / 06期
关键词
cactus graphs; edge metric generator; edge metric dimension; GRAPHS;
D O I
10.3934/math.2024795
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The cactus graph has many practical applications, particularly in radio communication systems. Let G = (V, E) be a finite, undirected, and simple connected graph, then the edge metric dimension of G is the minimum cardinality of the edge metric generator for G (an ordered set of vertices that uniquely determines each pair of distinct edges in terms of distance vectors). Given an ordered set of vertices Ge = {g1, g2, ..., gk} of a connected graph G, for any edge e is an element of E, we referred to the k-vector (ordered k-tuple), r(e|Ge) = (d(e, g1), d(e, g2), ..., d(e, gk)) as the edge metric representation of e with respect to Ge. In this regard, Ge is an edge metric generator for G if, and only if, for every pair of distinct edges e1, e2 is an element of E implies r(e1|Ge) # r(e2|Ge). In this paper, we investigated another class of cacti different from the cacti studied in previous literature. We determined the edge metric dimension of the following cacti: C(n, c, r) and C(n, m, c, r) in terms of the number of cycles (c) and the number
引用
收藏
页码:16422 / 16435
页数:14
相关论文
共 38 条
[1]  
Adawiyah R., 2019, Journal of Physics: Conference Series, V1180, DOI 10.1088/1742-6596/1180/1/012005
[2]   Edge metric dimension of some classes of circulant graphs [J].
Ahsan, Muhammad ;
Zahid, Zohaib ;
Zafar, Sohail .
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA, 2020, 28 (03) :15-37
[3]   Resolvability in graphs and the metric dimension of a graph [J].
Chartrand, G ;
Eroh, L ;
Johnson, MA ;
Oellermann, OR .
DISCRETE APPLIED MATHEMATICS, 2000, 105 (1-3) :99-113
[4]   Cacti with the smallest, second smallest, and third smallest Gutman index [J].
Chen, Shubo .
JOURNAL OF COMBINATORIAL OPTIMIZATION, 2016, 31 (01) :327-332
[5]   On the Edge Metric Dimension of Different Families of Mobius Networks [J].
Deng, Bo ;
Nadeem, Muhammad Faisal ;
Azeem, Muhammad .
MATHEMATICAL PROBLEMS IN ENGINEERING, 2021, 2021
[6]   Edge Metric Dimension of Some Generalized Petersen Graphs [J].
Filipovic, Vladimir ;
Kartelj, Aleksandar ;
Kratica, Jozef .
RESULTS IN MATHEMATICS, 2019, 74 (04)
[7]   Extremal results for graphs of bounded metric dimension [J].
Geneson, Jesse ;
Kaustav, Suchir ;
Labelle, Antoine .
DISCRETE APPLIED MATHEMATICS, 2022, 309 :123-129
[8]   Metric dimension and pattern avoidance in graphs [J].
Geneson, Jesse .
DISCRETE APPLIED MATHEMATICS, 2020, 284 :1-7
[9]   Fractional local edge dimensions of a graph [J].
Goshi, Nosheen ;
Zafar, Sohail ;
Rashid, Tabasam .
DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2024, 16 (03)
[10]  
Harary F., 1976, Ars Combinatoria, V2, P191