De novo Drug Design using Reinforcement Learning with Multiple GPT Agents

被引:0
|
作者
Hu, Xiuyuan [1 ,2 ]
Liu, Guoqing [2 ]
Zhao, Yang [1 ]
Zhang, Hao [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Beijing, Peoples R China
[2] Microsoft Res AI4Sci, Beijing, Peoples R China
关键词
DISCOVERY; GENERATION; DOCKING;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
De novo drug design is a pivotal issue in pharmacology and a new area of focus in AI for science research. A central challenge in this field is to generate molecules with specific properties while also producing a wide range of diverse candidates. Although advanced technologies such as transformer models and reinforcement learning have been applied in drug design, their potential has not been fully realized. Therefore, we propose MolRL-MGPT, a reinforcement learning algorithm with multiple GPT agents for drug molecular generation. To promote molecular diversity, we encourage the agents to collaborate in searching for desirable molecules in diverse directions. Our algorithm has shown promising results on the GuacaMol benchmark and exhibits efficacy in designing inhibitors against SARS-CoV-2 protein targets. The codes are available at: https://github.com/HXYfighter/ MolRL- MGPT.
引用
收藏
页数:14
相关论文
共 50 条
  • [21] Optimizing blood-brain barrier permeation through deep reinforcement learning for de novo drug design
    Pereira, Tiago
    Abbasi, Maryam
    Oliveira, Jose Luis
    Ribeiro, Bernardete
    Arrais, Joel
    BIOINFORMATICS, 2021, 37 : I84 - I92
  • [22] Molecular generation strategy and optimization based on A2C reinforcement learning in de novo drug design
    Wang, Qian
    Wei, Zhiqiang
    Hu, Xiaotong
    Wang, Zhuoya
    Dong, Yujie
    Liu, Hao
    BIOINFORMATICS, 2023, 39 (11)
  • [23] Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds
    Maria Korshunova
    Niles Huang
    Stephen Capuzzi
    Dmytro S. Radchenko
    Olena Savych
    Yuriy S. Moroz
    Carrow I. Wells
    Timothy M. Willson
    Alexander Tropsha
    Olexandr Isayev
    Communications Chemistry, 5
  • [24] Memory-assisted reinforcement learning for diverse molecular de novo design
    Blaschke, Thomas
    Engkvist, Ola
    Bajorath, Juergen
    Chen, Hongming
    JOURNAL OF CHEMINFORMATICS, 2020, 12 (01)
  • [25] De novo design of luciferases using deep learning
    Yeh, Andy Hsien-Wei
    Norn, Christoffer
    Kipnis, Yakov
    Tischer, Doug
    Pellock, Samuel J.
    Evans, Declan
    Ma, Pengchen
    Lee, Gyu Rie
    Zhang, Jason Z.
    Anishchenko, Ivan
    Coventry, Brian
    Cao, Longxing
    Dauparas, Justas
    Halabiya, Samer
    DeWitt, Michelle
    Carter, Lauren
    Houk, K. N.
    Baker, David
    NATURE, 2023, 614 (7949) : 774 - +
  • [26] Memory-assisted reinforcement learning for diverse molecular de novo design
    Thomas Blaschke
    Ola Engkvist
    Jürgen Bajorath
    Hongming Chen
    Journal of Cheminformatics, 12
  • [27] Generative and reinforcement learning approaches for the automated de novo design of bioactive compounds
    Korshunova, Maria
    Huang, Niles
    Capuzzi, Stephen
    Radchenko, Dmytro S.
    Savych, Olena
    Moroz, Yuriy S.
    Wells, Carrow, I
    Willson, Timothy M.
    Tropsha, Alexander
    Isayev, Olexandr
    COMMUNICATIONS CHEMISTRY, 2022, 5 (01)
  • [28] De novo design of luciferases using deep learning
    Andy Hsien-Wei Yeh
    Christoffer Norn
    Yakov Kipnis
    Doug Tischer
    Samuel J. Pellock
    Declan Evans
    Pengchen Ma
    Gyu Rie Lee
    Jason Z. Zhang
    Ivan Anishchenko
    Brian Coventry
    Longxing Cao
    Justas Dauparas
    Samer Halabiya
    Michelle DeWitt
    Lauren Carter
    K. N. Houk
    David Baker
    Nature, 2023, 614 : 774 - 780
  • [29] De novo drug design by iterative multiobjective deep reinforcement learning with graph-based molecular quality assessment
    Fang, Yi
    Pan, Xiaoyong
    Shen, Hong-Bin
    BIOINFORMATICS, 2023, 39 (04)
  • [30] EarlGAN: An enhanced actor-critic reinforcement learning agent-driven GAN for de novo drug design
    Tang, Huidong
    Li, Chen
    Jiang, Shuai
    Yu, Huachong
    Kamei, Sayaka
    Yamanishi, Yoshihiro
    Morimoto, Yasuhiko
    PATTERN RECOGNITION LETTERS, 2023, 175 : 45 - 51