Addressing adsorption and catalysis of lithium polysulfide via electronic distribution of molybdenum carbide host

被引:5
作者
Duan, Ruixian [1 ,2 ]
Li, Xifei [1 ,2 ]
Cao, Guiqiang [1 ,2 ]
Jiang, Qinting [1 ,2 ]
Li, Jun [1 ,2 ]
Chen, Liping [1 ,2 ]
Wang, Jingjing [1 ,2 ]
Hou, Chenyang [1 ,2 ]
Li, Ming [1 ,2 ]
Yang, Zihao [1 ,2 ]
Yang, Xuan [1 ,2 ]
Zuo, Jiaxuan [1 ,2 ]
Xi, Yukun [1 ,2 ]
Xie, Chong [1 ,2 ]
Wang, Jing [2 ]
Li, Wenbin [1 ,2 ]
Zhang, Jiujun [1 ,2 ,3 ]
机构
[1] Xian Univ Technol, Inst Adv Electrochem Energy, Xian 710048, Peoples R China
[2] Xian Univ Technol, Sch Mat Sci & Engn, Xian 710048, Peoples R China
[3] Fuzhou Univ, Inst New Energy Mat & Engn, Coll Mat Sci & Engn, Fuzhou 350108, Peoples R China
基金
中国国家自然科学基金;
关键词
Molybdenum carbide; Electronic distribution; Heterostructure; Mott-Schottky Interface; Sulfur cathode; Lithium-sulfur batteries; HYDROGEN EVOLUTION; INTERFACE; KINETICS;
D O I
10.1016/j.jcis.2024.04.182
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Heterostructure engineering is considered a crucial strategy to modulate the intrinsic charge transfer behavior of materials, enhance catalytic activity, and optimize sulfur electrochemical processes. However, parsing the role of heterogeneous interface-structure - property relationships in heterostructures is still a key scientific issue to realize the efficient catalytic conversion of polysulfides. Based on this, molybdenum carbide (Mo 2 C) was successfully partial reduced to molybdenum metal (Mo) via a thermal reduction at high-temperature and the typical Mo-Mo 2 C-based Mott-Schottky heterostructures were simultaneously constructed, which realized the modulation of the electronic structure of Mo 2 C and optimized the conversion process of lithium polysulfides (LPS). Compared with single molybdenum carbide, the modulated molybdenum carbide acts as an electron donor with stronger Mo -S bonding strength as well as higher polysulfide adsorption energy, faster Li 2 S conversion kinetics, and greatly facilitates the adsorption -> catalysis process of LPS. As a result, yolk-shell Mo-Mo 2 C heterostructure (C@Mo-Mo 2 C) exhibits excellent cycling performance as a sulfur host, with a discharge specific capacity of 488.41 mAh g -1 for C@Mo-Mo 2 C/S at 4 C and present an excellent high -rate cyclic performance accompanied by capacity decay rate of 0.08 % per cycle after 400 cycles at 2 C. Heterostructure-acting Mo 2 C electron distribution modulation engineering may contributes to the understanding of the structure -interface -property interaction law in heterostructures and further enables the efficient modulation of the chemical behavior of sulfur.
引用
收藏
页码:466 / 476
页数:11
相关论文
共 63 条
[1]   KINETICS OF ELECTROCRYSTALLIZATION OF THIN FILMS OF CALOMEL [J].
BEWICK, A ;
THIRSK, HR ;
FLEISCHMANN, M .
TRANSACTIONS OF THE FARADAY SOCIETY, 1962, 58 (479) :2200-&
[2]   Tuning Redox Behavior of Sulfur Cathodes Via Ternary-Coordinated Single Fe Atom in Lithium-Sulfur Batteries [J].
Cao, Guiqiang ;
Li, Xifei ;
Chen, Liping ;
Duan, Ruixian ;
Li, Jun ;
Jiang, Qinting ;
Wang, Jingjing ;
Li, Mengyang ;
Li, Ming ;
Wang, Jing ;
Xi, Yukun ;
Li, Wenbin ;
Peng, Jianhong .
SMALL, 2024, 20 (24)
[3]   Redistribution of d-orbital in Fe-N4 active sites optimizing redox kinetics of the sulfur cathode [J].
Cao, Guiqiang ;
Li, Xifei ;
Duan, Ruixian ;
Xu, Kaihua ;
Zhang, Kun ;
Chen, Liping ;
Jiang, Qinting ;
Li, Jun ;
Wang, Jingjing ;
Li, Ming ;
Wang, Ni ;
Wang, Jing ;
Xi, Yukun ;
Xie, Chong ;
Li, Wenbin .
NANO ENERGY, 2023, 116
[4]   Controllable catalysis behavior for high performance lithium sulfur batteries: From kinetics to strategies [J].
Cao, Guiqiang ;
Duan, Ruixian ;
Li, Xifei .
ENERGYCHEM, 2023, 5 (01)
[5]   Bifunctional Catalytic Effect of CoSe2 for Lithium-Sulfur Batteries: Single Doping versus Dual Doping [J].
Chen, Liping ;
Xu, Yunhua ;
Cao, Guiqiang ;
Sari, Hirbod Maleki Kheimeh ;
Duan, Ruixian ;
Wang, Jingjing ;
Xie, Chong ;
Li, Wenbin ;
Li, Xifei .
ADVANCED FUNCTIONAL MATERIALS, 2022, 32 (08)
[6]   Multi-functional yolk-shell structured materials and their applications for high-performance lithium ion battery and lithium sulfur battery [J].
Deng, Nanping ;
Li, Yanan ;
Li, Quanxiang ;
Zeng, Qiang ;
Luo, Shengbin ;
Wang, Hao ;
Kang, Weimin ;
Cheng, Bowen .
ENERGY STORAGE MATERIALS, 2022, 53 :684-743
[7]   Crystal phase engineering of nanoflower-like hollow MoSe2 boosting polysulfide conversion for lithium-sulfur batteries [J].
Duan, Ruixian ;
Li, Xifei ;
Cao, Guiqiang ;
Chen, Liping ;
Li, Jun ;
Jiang, Qinting ;
Cao, Yanyan ;
Wang, Jingjing ;
Li, Wenbin .
NANOTECHNOLOGY, 2023, 34 (15)
[8]   Mechanism and Kinetics of Li2S Precipitation in Lithium-Sulfur Batteries [J].
Fan, Frank Y. ;
Carter, W. Craig ;
Chiang, Yet-Ming .
ADVANCED MATERIALS, 2015, 27 (35) :5203-5209
[9]   Heterojunction-Composited Architecture for Li-O2 Batteries with Low Overpotential and Long-Term Cyclability [J].
Ge, Bingcheng ;
Wang, Jing ;
Sun, Yong ;
Guo, Jianxin ;
Fernandez, Carlos ;
Peng, Quming .
ACS APPLIED ENERGY MATERIALS, 2020, 3 (04) :3789-3797
[10]   Selective Catalysis Remedies Polysulfide Shuttling in Lithium-Sulfur Batteries [J].
Hua, Wuxing ;
Li, Huan ;
Pei, Chun ;
Xia, Jingyi ;
Sun, Yafei ;
Zhang, Chen ;
Lv, Wei ;
Tao, Ying ;
Jiao, Yan ;
Zhang, Bingsen ;
Qiao, Shi-Zhang ;
Wan, Ying ;
Yang, Quan-Hong .
ADVANCED MATERIALS, 2021, 33 (38)