Bifurcation theory of limit cycles by higher order Melnikov functions and applications

被引:4
|
作者
Liu, Shanshan [1 ]
Han, Maoan [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
国家重点研发计划;
关键词
Higher order Melnikov function; Hopf bifurcation; Homoclinic bifurcation; Limit cycle; HAMILTONIAN-SYSTEMS; PERIODIC-SOLUTIONS; NUMBER; ORBITS; HOPF;
D O I
10.1016/j.jde.2024.04.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Poincar & eacute;, Hopf and homoclinic bifurcations of limit cycles for planar nearHamiltonian systems. Our main results establish Hopf and homoclinic bifurcation theories by higher order Melnikov functions, obtaining conditions on upper bounds and lower bounds of the maximum number of limit cycles. As an application, we concern a cubic near -Hamiltonian system, and study Hopf and homoclinic bifurcations in detail, finding more limit cycles than [26]. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:29 / 66
页数:38
相关论文
共 50 条
  • [41] Existence of at most 1, 2, or 3 zeros of a Melnikov function and limit cycles
    Han, MA
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2001, 170 (02) : 325 - 343
  • [42] Bifurcation of Limit Cycles for Some Lienard Systems with a Nilpotent Singular Point
    Yang, Junmin
    Sun, Xianbo
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2015, 25 (05):
  • [43] Hopf Bifurcation of Limit Cycles in Some Piecewise Smooth Lienard Systems
    Xu, Weijiao
    Han, Maoan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (12):
  • [44] Melnikov functions and limit cycle bifurcations for a class of piecewise Hamiltonian systems
    Hou, Wenwen
    Han, Maoan
    AIMS MATHEMATICS, 2024, 9 (02): : 3957 - 4013
  • [45] Bifurcation of Limit Cycles of a Piecewise Smooth Hamiltonian System
    Jihua Yang
    Liqin Zhao
    Qualitative Theory of Dynamical Systems, 2022, 21
  • [46] Bifurcation of limit cycles at infinity in a class of switching systems
    Li, Feng
    Liu, Yuanyuan
    Yu, Pei
    NONLINEAR DYNAMICS, 2017, 88 (01) : 403 - 414
  • [47] Entrainment in nerve by a ferroelectric model: Bifurcation and limit cycles
    Shirane, K
    Tokimoto, T
    Kushibe, H
    PHYSICA D, 1996, 90 (03): : 306 - 312
  • [48] Global bifurcation of limit cycles in a family of multiparameter system
    Xiang, GH
    Han, MA
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2004, 14 (09): : 3325 - 3335
  • [49] Bifurcation of limit cycles at infinity in a class of switching systems
    Feng Li
    Yuanyuan Liu
    Pei Yu
    Nonlinear Dynamics, 2017, 88 : 403 - 414
  • [50] Limit cycles of a second-order differential equation
    Chen, Ting
    Llibre, Jaume
    APPLIED MATHEMATICS LETTERS, 2019, 88 : 111 - 117