Bifurcation theory of limit cycles by higher order Melnikov functions and applications

被引:4
|
作者
Liu, Shanshan [1 ]
Han, Maoan [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Zhejiang, Peoples R China
基金
国家重点研发计划;
关键词
Higher order Melnikov function; Hopf bifurcation; Homoclinic bifurcation; Limit cycle; HAMILTONIAN-SYSTEMS; PERIODIC-SOLUTIONS; NUMBER; ORBITS; HOPF;
D O I
10.1016/j.jde.2024.04.036
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we study Poincar & eacute;, Hopf and homoclinic bifurcations of limit cycles for planar nearHamiltonian systems. Our main results establish Hopf and homoclinic bifurcation theories by higher order Melnikov functions, obtaining conditions on upper bounds and lower bounds of the maximum number of limit cycles. As an application, we concern a cubic near -Hamiltonian system, and study Hopf and homoclinic bifurcations in detail, finding more limit cycles than [26]. (c) 2024 Elsevier Inc. All rights reserved.
引用
收藏
页码:29 / 66
页数:38
相关论文
共 50 条
  • [11] ASYMPTOTIC EXPANSIONS OF MELNIKOV FUNCTIONS AND LIMIT CYCLE BIFURCATIONS
    Han, Maoan
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2012, 22 (12):
  • [12] A generalization of Francoise's algorithm for calculating higher order Melnikov functions
    Jebrane, A
    Mardesic, P
    Pelletier, M
    BULLETIN DES SCIENCES MATHEMATIQUES, 2002, 126 (09): : 705 - 732
  • [13] Limit Cycles from Hopf Bifurcation in Nongeneric Quadratic Reversible Systems with Piecewise Perturbations
    Zhu, Chunyu
    Tian, Yun
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2021, 31 (16):
  • [14] On Uniqueness of Limit Cycles in General Bogdanov-Takens Bifurcation
    Han, Maoan
    Llibre, Jaume
    Yang, Junmin
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2018, 28 (09):
  • [15] Melnikov functions and limit cycles in piecewise smooth perturbations of a linear center using regularization method
    Braga, Denis de Carvalho
    da Fonseca, Alexander Fernandes
    Mello, Luis Fernando
    NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2017, 36 : 101 - 114
  • [16] BIFURCATION OF LIMIT CYCLES FOR CUBIC REVERSIBLE SYSTEMS
    Shao, Yi
    Wu, Kuilin
    ELECTRONIC JOURNAL OF DIFFERENTIAL EQUATIONS, 2014,
  • [17] Second Order Melnikov Functions of Piecewise Hamiltonian Systems
    Yang, Peixing
    Francoise, Jean-Pierre
    Yu, Jiang
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2020, 30 (01):
  • [18] Melnikov function and limit cycle bifurcation from a nilpotent center
    Jiang, Jiao
    Han, Maoan
    BULLETIN DES SCIENCES MATHEMATIQUES, 2008, 132 (03): : 182 - 193
  • [19] Bifurcation of limit cycles in a fourth-order near-Hamiltonian system
    Han, Maoan
    Shang, Desheng
    Zheng, Wang
    Yu, Pei
    INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS, 2007, 17 (11): : 4117 - 4144
  • [20] Bifurcation of Limit Cycles of a Piecewise Smooth Hamiltonian System
    Yang, Jihua
    Zhao, Liqin
    QUALITATIVE THEORY OF DYNAMICAL SYSTEMS, 2022, 21 (04)