Investigation of Pyridine as a Cocatalyst for the CO2 Reduction Reaction on the Cu2O Cathode Surface

被引:4
|
作者
Xu, Linhan [1 ,4 ]
Xu, Shenzhen [1 ,2 ,3 ]
机构
[1] Peking Univ, Sch Mat Sci & Engn, Beijing 100871, Peoples R China
[2] AI Sci Inst, Beijing 100084, Peoples R China
[3] Peking Univ, Sch Mat Sci & Engn, Beijing Key Lab Theory & Technol Adv Battery Mat, Beijing 100871, Peoples R China
[4] Liaoning Acad Mat, Inst Mat Plainificat, Shenyang 110167, Peoples R China
来源
ACS CATALYSIS | 2024年 / 14卷 / 12期
基金
中国国家自然科学基金;
关键词
CO2RR; Cu2O cathode; Pyridine cocatalyst; First-principles calculations; Selectivity enhancement; TOTAL-ENERGY CALCULATIONS; CARBON-DIOXIDE FIXATION; PHOTOELECTROCHEMICAL REDUCTION; ARTIFICIAL PHOTOSYNTHESIS; PHOTOCATALYTIC REDUCTION; WATER; COPPER; OXIDE; ADSORPTION; CONVERSION;
D O I
10.1021/acscatal.4c02785
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Photoelectrocatalytic CO2 reduction is a way to capture carbon and store solar energy at the same time. A Cu2O photoelectrode is a nonhazardous material based on relatively abundant elements possessing both good multielectron transfer properties and high light absorption efficiency. However, the catalytic-active (110) facet and the inert (100) facet are found to be easily oxidized into CuO in aqueous solution, causing a stability issue, while the Cu2O (111) facet is stable but exhibits poor selectivity of the CO2 reduction reaction (CO2RR). Recently, pyridine (Py) is reported as a cocatalyst that can improve the photocatalytic performance of cathode materials for CO2RR. We therefore perform first-principles calculations to investigate the Py cocatalytic process on the Cu2O (111) surface for CO2RR and predict that the Py-derived catalytic intermediates formed via electronic transfer from the surface could potentially enhance the selectivity of the Cu2O surface toward CO2 reduction while maintaining the promising stability of the Cu2O (111) facet.
引用
收藏
页码:9554 / 9564
页数:11
相关论文
共 50 条
  • [11] Electrochemical Studies for CO2 Reduction Using Synthesized Co3O4 (Anode) and Cu2O (Cathode) as Electrocatalysts
    Yadav, V. S. K.
    Purkait, M. K.
    ENERGY & FUELS, 2015, 29 (10) : 6670 - 6677
  • [12] Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products
    Chang, Xiaoxia
    Wang, Tuo
    Gong, Jinlong
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 254
  • [13] Stable aqueous photoelectrochemical CO2 reduction by a Cu2O dark cathode with improved selectivity for carbonaceous products
    Chang, Xiaoxia
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2017, 253
  • [14] Stable Aqueous Photoelectrochemical CO2 Reduction by a Cu2O Dark Cathode with Improved Selectivity for Carbonaceous Products
    Chang, Xiaoxia
    Wang, Tuo
    Zhang, Peng
    Wei, Yijia
    Zhao, Jiubing
    Gong, Jinlong
    ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2016, 55 (31) : 8840 - 8845
  • [15] Shape-Dependent Performance of Cu/Cu2O for Photocatalytic Reduction of CO2
    Zheng, Yuke
    Duan, Zitao
    Liang, Ruoxuan
    Lv, Ruiqi
    Wang, Chong
    Zhang, Zhaoxia
    Wan, Shaolong
    Wang, Shuai
    Xiong, Haifeng
    Ngaw, Chee Keong
    Lin, Jingdong
    Wang, Yong
    CHEMSUSCHEM, 2022, 15 (10)
  • [16] Promotion of electrocatalytic CO2 reduction on Cu2O film by ZnO nanoparticles
    Zhang, Wenfei
    Zhou, Qulan
    Qi, Ji
    Li, Na
    REACTION KINETICS MECHANISMS AND CATALYSIS, 2021, 134 (01) : 243 - 257
  • [17] Cu/Cu2O Electrodes and CO2 Reduction to Formic Acid: Effects of Organic Additives on Surface Morphology and Activity
    Tran Ngoc Huan
    Simon, Philippe
    Benayad, Anass
    Guetaz, Laure
    Artero, Vincent
    Fontecave, Marc
    CHEMISTRY-A EUROPEAN JOURNAL, 2016, 22 (39) : 14029 - 14035
  • [18] Photocorrosion behavior of Cu2O nanowires during photoelectrochemical CO2 reduction
    Wang, Qingmei
    Zhang, Yanfang
    Liu, Yang
    Wang, Keke
    Qiu, Weixin
    Chen, Long
    Li, Wenzhang
    Li, Jie
    JOURNAL OF ELECTROANALYTICAL CHEMISTRY, 2022, 912
  • [19] Electrochemical reduction of CO2 to methanol over MWCNTs impregnated with Cu2O
    Malik, M. Irfan
    Malaibari, Zuhair Omar
    Atieh, Muataz
    Abussaud, Basim
    CHEMICAL ENGINEERING SCIENCE, 2016, 152 : 468 - 477
  • [20] Supramolecular Engineering to Improve Electrocatalytic CO2 Reduction Activity of Cu2O
    Zhang, Ya
    Zhang, Xiao-Yu
    Chen, Kai
    Sun, Wei-Yin
    CHEMSUSCHEM, 2021, 14 (08) : 1847 - 1852