Reduced-order methods for neutron transport kinetics problem based on proper orthogonal decomposition and dynamic mode decomposition

被引:0
|
作者
Chi, Honghang [1 ]
Ma, Yu [1 ]
Wang, Yahui [1 ]
机构
[1] Sun Yat Sen Univ, Sino French Inst Nucl Engn & Technol, Zhuhai 519082, Peoples R China
基金
中国国家自然科学基金;
关键词
Reduced-order method; Neutron transport kinetics problem; Proper orthogonal decomposition; Dynamic mode decomposition; REDUCTION; SYSTEMS;
D O I
10.1016/j.anucene.2024.110641
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
This work proposes two reduced -order methods to address the high computing resource consumption of neutron transport kinetics problems. The first method is based on proper orthogonal decomposition (POD), which integrates the POD basis with the governing equation. The second method is based on dynamic mode decomposition (DMD), which constructs an approximate linear relationship to predict the time -dependent physical quantities. Numerical results demonstrate that both two reduced -order methods can achieve high accuracy and efficient prediction. For the selected cases, POD can obtain a speed-up ratio of 105 - 429, while DMD can obtain a speed-up ratio of 2300 - 12500. For step transient situations, POD and DMD predict power errors do not exceed 0.42% and 0.05%. For ramp transient situations, POD and DMD predict power errors do not exceed 0.69% and 1.9%. This work can provide some useful suggestions for applications and further development in neutron transport kinetics reduced -order model.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] HYBRID REDUCED-ORDER INTEGRATION WITH PROPER ORTHOGONAL DECOMPOSITION AND DYNAMIC MODE DECOMPOSITION
    Williams, Matthew O.
    Schmid, Peter J.
    Kutz, J. Nathan
    MULTISCALE MODELING & SIMULATION, 2013, 11 (02) : 522 - 544
  • [2] Constrained reduced-order models based on proper orthogonal decomposition
    Reddy, Sohail R.
    Freno, Brian A.
    Cizmas, Paul G. A.
    Gokaltun, Seckin
    McDaniel, Dwayne
    Dulikravich, George S.
    COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 321 : 18 - 34
  • [3] An efficient proper orthogonal decomposition based reduced-order model for compressible flows
    Krath, Elizabeth H.
    Carpenter, Forrest L.
    Cizmas, Paul G. A.
    Johnston, David A.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2021, 426 (426)
  • [4] HYBRID REDUCED-ORDER INTEGRATION WITH PROPER ORTHOGONAL DECOMPOSITION AND DYNAMIC MODE DECOMPOSITION (vol 11, pg 522, 2013)
    Williams, Matthew O.
    Schmid, Peter J.
    Kutz, J. Nathan
    MULTISCALE MODELING & SIMULATION, 2013, 11 (04) : 1311 - 1311
  • [5] Acceleration techniques for reduced-order models based on proper orthogonal decomposition
    Cizmas, Paul G. A.
    Richardson, Brian R.
    Brenner, Thomas A.
    O'Brien, Thomas J.
    Breault, Ronald W.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2008, 227 (16) : 7791 - 7812
  • [6] Non-Intrusive Reduced-Order Modeling Based on Parametrized Proper Orthogonal Decomposition
    Li, Teng
    Pan, Tianyu
    Zhou, Xiangxin
    Zhang, Kun
    Yao, Jianyao
    ENERGIES, 2024, 17 (01)
  • [7] Proper orthogonal decomposition reduced-order model of the global oceans
    Kitsios, Vassili
    Cordier, Laurent
    O'Kane, Terence J.
    THEORETICAL AND COMPUTATIONAL FLUID DYNAMICS, 2024, 38 (05) : 707 - 727
  • [8] Study on Burnup Calculation Method Based on Proper Orthogonal Decomposition Reduced-order
    Zhang B.
    Bi Y.
    Gong H.
    Zhang Y.
    Yuan X.
    Yuanzineng Kexue Jishu/Atomic Energy Science and Technology, 2023, 57 (10): : 1938 - 1948
  • [9] Reduced-order optimal control of water flooding using proper orthogonal decomposition
    van Doren, Jorn F. M.
    Markovinovic, Renato
    Jansen, Jan-Dirk
    COMPUTATIONAL GEOSCIENCES, 2006, 10 (01) : 137 - 158
  • [10] Reduced-order optimal control of water flooding using proper orthogonal decomposition
    Jorn F. M. van Doren
    Renato Markovinović
    Jan-Dirk Jansen
    Computational Geosciences, 2006, 10 : 137 - 158