共 50 条
Oxygen-containing functional groups in Fe 3 O 4 @three-dimensional graphene nanocomposites for enhancing H 2 O 2 production and orientation to 1 O 2 in electro-Fenton
被引:15
|作者:
Chen, Yi
[1
]
Su, Ruidian
[1
]
Xu, Fei
[2
]
Ma, Mengyu
[1
]
Wang, Yan
[1
]
Ma, Defang
[1
]
Li, Qian
[1
]
机构:
[1] Shandong Univ, Sch Environm Sci & Engn, Shandong Prov Key Lab Water Pollut Control & Resou, Shandong Key Lab Environm Proc & Hlth, Qingdao 266200, Peoples R China
[2] Shandong Univ, Environm Res Inst, Qingdao 266200, Peoples R China
基金:
中国国家自然科学基金;
关键词:
Electro-Fenton;
Oxygen-containing functional groups;
Singlet oxygen;
WASTE-WATER;
PERFORMANCE;
ACTIVATION;
COMPOSITE;
D O I:
10.1016/j.jhazmat.2024.134162
中图分类号:
X [环境科学、安全科学];
学科分类号:
08 ;
0830 ;
摘要:
In electro-Fenton (EF), development of a bifunctional electrocatalyst to realize simultaneous H 2 O 2 generation and activation efficiently for generating reactive species remains a challenge. In particular, a nonradicalmediated EF is more favorable for actual wastewater remediation, and deserves more attention. In this study, three-dimensional graphene loaded with Fe 3 O 4 nanoparticles (Fe 3 O 4 @3D-GNs) with abundant oxygencontaining functional groups (OFGs) was synchronously synthesized using a NaCl-template method and served as a cathode to establish a highly efficient and selective EF process for contaminant degradation. The amounts of OFGs can be effectively modulated via the pyrolysis temperature to regulate the 2e - oxygen reduction reaction activity and reactive oxygen species (ROS) production. The optimized Fe 3 O 4 @3D-GNs synthesized at 750 degrees C (Fe 3 O 4 @3D-GNs-750) with the highest -C-O-C and -C=O group ratios exhibited the maximum H 2 O 2 and 1 O 2 yields during electrocatalysis, thus showing remarkable versatility for eliminating organic contaminants from surface water bodies. Experiments and theoretical calculations have demonstrated the dominant role of -C-O-C in generating H 2 O 2 and the positive influence of -C=O sites on the production of 1 O 2 . Moreover, the surface -bound Fe(II) favors the generation of surface -bound center dot OH, which steers a more favorable oxidative conversion of H 2 O 2 to 1 O 2 . Fe 3 O 4 @3D-GNs were proven to be less pH -dependent, low -energy, stable, and recyclable for practical applications in wastewater purification. This study provides an innovative strategy to engineer active sites to achieve the selective electrocatalysis for eliminating pollution and reveals a novel perspective for 1 O 2 -generation mechanism in the Fenton reaction.
引用
收藏
页数:14
相关论文