Enabling process control though predictive design and virtual metrology for high product mix manufacturing

被引:0
作者
Lee, Hyung Joo [1 ]
Choi, Sanghyun [1 ]
Krishnankutty, Sudheesh [2 ]
Botta, Raghavendra [2 ]
Greeneltch, Nathan [3 ]
Jayaram, Srividya [3 ]
机构
[1] Siemens EDA, Seoul, South Korea
[2] Siemens EDA, Hyderabad, Telangana, India
[3] Siemens EDA, Plano, TX USA
来源
8TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM 2024 | 2024年
关键词
machine learning; virtual metrology; design features; high product mix manufacturing; process control;
D O I
10.1109/EDTM58488.2024.10511671
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The semiconductor foundry industry faces challenges in managing diverse customer demands and complex manufacturing processes. Variations in the chemical vapor deposition process affect transistor parameters and yield. Siemens' Calibre (R) software with machine learning techniques create a virtual metrology model that outperforms traditional methods. An advanced process control system, incorporating design features and real-time data, improves process capability and reduces film thickness variations in high-mix product foundry fabs, as confirmed by control simulations.
引用
收藏
页码:10 / 12
页数:3
相关论文
共 8 条
  • [1] Belyansky M, 2018, HANDBOOK OF THIN FILM DEPOSITION, 4TH EDITION, P231, DOI 10.1016/B978-0-12-812311-9.00008-6
  • [2] Remote Plasma Atomic Layer Deposition of SiNx Using Cyclosilazane and H2/N2 Plasma
    Cho, Haewon
    Lee, Namgue
    Choi, Hyeongsu
    Park, Hyunwoo
    Jung, Chanwon
    Song, Seokhwi
    Yuk, Hyunwoo
    Kim, Youngjoon
    Kim, Jong-Woo
    Kim, Keunsik
    Choi, Youngtae
    Park, Suhyeon
    Kwon, Yurim
    Jeon, Hyeongtag
    [J]. APPLIED SCIENCES-BASEL, 2019, 9 (17):
  • [3] Greeneltch N., 2023, DTCO and Computational Patterning II, Proceedings of SPIE, V12495
  • [4] Jayaram S., 2023, P 34 ANN SEMI ADV SE
  • [5] AI-guided reliability diagnosis for 5,7nm automotive process
    Kim, Dongin
    Lee, Hyung Joo
    Choi, Sanghyun
    Hong, Seungpyo
    Lee, Seungjae
    Kwak, Doohwan
    Jayaram, Srividya
    Paek, Seungwon
    Kwon, Minho
    Kim, Yeongdo
    Jung, Hyobe
    Kissiov, Ivan
    Tao, Melody
    Torres, Andres
    Greeneltch, Nathan
    Lee, Ho
    [J]. METROLOGY, INSPECTION, AND PROCESS CONTROL XXXVII, 2023, 12496
  • [6] Reliability Prediction for Automotive 5nm and 7nm Technology node by using Machine Learning based Solution
    Lee, Hyung Joo
    Kim, Dongin
    Choi, Sanghyun
    Hong, Seungpyo
    Kwak, Doohwan
    Jayaram, Srividya
    Paek, Seungwon
    Kwon, Minho
    Kim, Yeongdo
    Jung, Hyobe
    Kissiov, Ivan
    Tao, Melody
    Torres, Andres
    Greeneltch, Nathan
    Lee, Ho
    [J]. 2023 7TH IEEE ELECTRON DEVICES TECHNOLOGY & MANUFACTURING CONFERENCE, EDTM, 2023,
  • [7] Ueda M., 2015, P AEC APC S AS
  • [8] Xie YS, 2021, Arxiv, DOI [arXiv:2107.05071, 10.48550/arXiv.2107.05071, DOI 10.48550/ARXIV.2107.05071]