Multiple homoclinic solutions for nonsmooth second-order differential systems

被引:0
作者
Timoumi, Mohsen [1 ]
机构
[1] Univ Monastir, Dept Math, Monastir 5000, Tunisia
来源
ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN | 2024年 / 43卷 / 1-2期
关键词
Keywords. Nonsmooth differential systems; homoclinic solutions; Clark theorem; variational methods; HAMILTONIAN-SYSTEMS; ORBITS; EXISTENCE;
D O I
10.4171/ZAA/1735
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper, we obtain infinitely many pairs of homoclinic solutions for a class of nonsmooth second -order differential systems when the energy functional associated is not continuously differentiable and does not satisfy the Palais-Smale condition.
引用
收藏
页码:113 / 124
页数:12
相关论文
共 37 条
[1]   Superquadratic or asymptotically quadratic Hamiltonian systems: ground state homoclinic orbits [J].
Chen, Guan-Wei .
ANNALI DI MATEMATICA PURA ED APPLICATA, 2015, 194 (03) :903-918
[2]   Homoclinic orbits for second order Hamiltonian systems with asymptotically linear terms at infinity [J].
Chen, Guanwei .
ADVANCES IN DIFFERENCE EQUATIONS, 2014,
[3]   Infinitely many homoclinic solutions for a class of second-order Hamiltonian systems [J].
Chen, Huiwen ;
He, Zhimin .
ADVANCES IN DIFFERENCE EQUATIONS, 2014,
[4]   Fast homoclinic solutions for a class of damped vibration problems [J].
Chen, Peng ;
Tang, Xianhua ;
Agarwal, Ravi P. .
APPLIED MATHEMATICS AND COMPUTATION, 2013, 219 (11) :6053-6065
[5]   Fast homoclinic solutions for a class of damped vibration problems with subquadratic potentials [J].
Chen, Peng ;
Tang, X. H. .
MATHEMATISCHE NACHRICHTEN, 2013, 286 (01) :4-16
[6]   A VARIANT OF CLARK'S THEOREM AND ITS APPLICATIONS FOR NONSMOOTH FUNCTIONALS WITHOUT THE PALAIS-SMALE CONDITION [J].
Chen, Shaowei ;
Liu, Zhaoli ;
Wang, Zhi-Qiang .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2017, 49 (01) :446-470
[7]   Multiple homoclinic solutions for a class of nonhomogeneous Hamiltonian systems [J].
Deng, Chunhua ;
Wu, Dong-Lun .
BOUNDARY VALUE PROBLEMS, 2018,
[9]   Even homoclinic orbits for a class of damped vibration systems [J].
Fathi, Khelifi ;
Timoumi, Mohsen .
INDAGATIONES MATHEMATICAE-NEW SERIES, 2017, 28 (06) :1111-1125
[10]   Homoclinic solutions for a class of the second order Hamiltonian systems [J].
Izydorek, M ;
Janczewska, J .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2005, 219 (02) :375-389