Normalized solutions for Kirchhoff equation with L2-critical exponents

被引:0
|
作者
Liu, Changlin [1 ]
Lv, Ying [1 ]
Ou, Zengqi [1 ]
机构
[1] Southwest Univ, Sch Math & Stat, Chongqing 400715, Peoples R China
基金
中国国家自然科学基金;
关键词
EXISTENCE;
D O I
10.1063/5.0180748
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this paper, we study the nonexistence and existence of normalized solutions for the nonlinear Kirchhoff-type equation -a+b integral N-R|del u|(2)dx)Delta u=lambda u+|u|(p-2)u+|u|(q-2)u in R-N with prescribed L-2-norm, where N = 1, 2, 3, a, b > 0 are constants, q=2+8\N is L-2-critical exponent to Kirchhoff-type Equation, and p=2+4\N is the L-2-critical exponent to the "local" equation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Remarks on Normalized Solutions for L2-Critical Kirchhoff Problems
    Zeng, Yonglong
    Chen, Kuisheng
    TAIWANESE JOURNAL OF MATHEMATICS, 2016, 20 (03): : 617 - 627
  • [2] Normalized solutions to the Kirchhoff Equation with triple critical exponents in R4
    Fang, Xingling
    Ou, Zengqi
    Lv, Ying
    APPLIED MATHEMATICS LETTERS, 2024, 153
  • [3] Normalized Solutions for Critical Kirchhoff Equation With Convolution Nonlinearity in ℝ2
    Hu, Die
    Tang, Xianhua
    Jin, Peng
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2025,
  • [4] Normalized solutions for the fractional Schrodinger equation with a focusing nonlocal L2-critical or L2-supercritical perturbation
    Yang, Tao
    JOURNAL OF MATHEMATICAL PHYSICS, 2020, 61 (05)
  • [5] Normalized solutions to the Kirchhoff equation with L2-subcritical or critical nonlinearities in R2
    Hu, Jiaqing
    Mao, Anmin
    INDIAN JOURNAL OF PURE & APPLIED MATHEMATICS, 2024, 55 (02) : 508 - 512
  • [6] Normalized solutions to nonautonomous Kirchhoff equation
    Qiu, Xin
    Ou, Zeng Qi
    Lv, Ying
    COMMUNICATIONS IN ANALYSIS AND MECHANICS, 2024, 16 (03): : 457 - 486
  • [7] Positive Normalized Solutions to a Kind of Fractional Kirchhoff Equation with Critical Growth
    Zhang, Shiyong
    Zhang, Qiongfen
    FRACTAL AND FRACTIONAL, 2025, 9 (03)
  • [8] Normalized solutions to Choquard equation including the critical exponents and a logarithmic perturbation ☆
    Deng, Yinbin
    Shi, Yulin
    Yang, Xiaolong
    JOURNAL OF DIFFERENTIAL EQUATIONS, 2025, 429 : 204 - 246
  • [9] An Inhomogeneous, L2-Critical, Nonlinear Schrodinger Equation
    Genoud, Francois
    ZEITSCHRIFT FUR ANALYSIS UND IHRE ANWENDUNGEN, 2012, 31 (03): : 283 - 290
  • [10] NORMALIZED SOLUTIONS TO THE KIRCHHOFF EQUATION WITH A PERTURBATION TERM
    Hu, Jiaqing
    Mao, Anmin
    DIFFERENTIAL AND INTEGRAL EQUATIONS, 2023, 36 (3-4) : 289 - 312