Well-Posedness of the Fixed Point Problem of Multifunctions of Metric Spaces

被引:0
|
作者
Sundus, Nozara [1 ,2 ]
Ali, Basit [3 ]
Aphane, Maggie [4 ]
机构
[1] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
[2] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore 54600, Pakistan
[3] Univ Management & Technol, Sch Sci, Dept Math, C 2 Johar Town, Lahore 54770, Pakistan
[4] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, Molotlegi St,POB 107, ZA-0204 Pretoria, South Africa
关键词
sequentially equivalent metrics; well-posedness; multifunction; fixed point problem (FPP); GENERALIZED SENSE; CONTRACTIONS; THEOREMS;
D O I
10.3390/math12111628
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of metrics which are equivalent to the Hausdorff metric in some sense to establish the well-posedness of fixed point problems associated with multifunctions of metric spaces, satisfying various generalized contraction conditions. Examples are provided to justify the applicability of new results.
引用
收藏
页数:19
相关论文
共 50 条
  • [31] Well-posedness for the split equilibrium problem
    Dey, Soumitra
    Vetrivel, V.
    Xu, Hong-Kun
    OPTIMIZATION LETTERS, 2024, 18 (04) : 977 - 989
  • [32] Well-posedness for the split equilibrium problem
    Soumitra Dey
    V. Vetrivel
    Hong-Kun Xu
    Optimization Letters, 2024, 18 : 977 - 989
  • [33] Remarks on the fixed point problem of 2-metric spaces
    Nguyen Van Dung
    Nguyen Trung Hieu
    Nguyen Thi Thanh Ly
    Vo Duc Thinh
    FIXED POINT THEORY AND APPLICATIONS, 2013, : 1 - 6
  • [34] The well-posedness of stochastic Kawahara equation: fixed point argument and Fourier restriction method
    Abd-Allah Hyder
    M. Zakarya
    Journal of the Egyptian Mathematical Society, 27 (1)
  • [35] Existence, Error estimation, Rate of convergence, Ulam-Hyers stability, Well-posedness and Limit Shadowing Property Related to a Fixed Point Problem
    Choudhury, Binayak S.
    Metiya, Nikhilesh
    Kundu, Sunirmal
    BOLETIM SOCIEDADE PARANAENSE DE MATEMATICA, 2022, 40
  • [36] ON THE WELL-POSEDNESS OF ANTIPERIODIC PROBLEM FOR SYSTEMS OF NONLINEAR IMPULSIVE EQUATIONS WITH FIXED IMPULSES POINTS
    Ashordia, Malkhaz
    MEMOIRS ON DIFFERENTIAL EQUATIONS AND MATHEMATICAL PHYSICS, 2018, 74 : 153 - 164
  • [37] FIXED POINTS OF A CLASS OF CONTRACTIVE-TYPE MULTIFUNCTIONS ON FUZZY METRIC SPACES
    Ionescu, Cristiana
    Rezapour, Sh
    Samei, M. E.
    UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 3 - 12
  • [38] CONDITIONAL WELL-POSEDNESS FOR AN ELLIPTIC INVERSE PROBLEM
    Knowles, Ian
    Larussa, Mary A.
    SIAM JOURNAL ON APPLIED MATHEMATICS, 2011, 71 (04) : 952 - 971
  • [39] Remarks on the well-posedness of the nonlinear Cauchy problem
    Métivier, G
    GEOMETRIC ANALYSIS OF PDE AND SEVERAL COMPLEX VARIABLES: DEDICATED TO FRANCOIS TREVES, 2005, 368 : 337 - 356
  • [40] Well-posedness of the Cauchy problem of Ostrovsky equation in analytic Gevrey spaces and time regularity
    Aissa Boukarou
    Khaled Zennir
    Kaddour Guerbati
    Svetlin G. Georgiev
    Rendiconti del Circolo Matematico di Palermo Series 2, 2021, 70 : 349 - 364