Well-Posedness of the Fixed Point Problem of Multifunctions of Metric Spaces

被引:0
|
作者
Sundus, Nozara [1 ,2 ]
Ali, Basit [3 ]
Aphane, Maggie [4 ]
机构
[1] Auburn Univ, Dept Math & Stat, Auburn, AL 36849 USA
[2] Govt Coll Univ, Abdus Salam Sch Math Sci, Lahore 54600, Pakistan
[3] Univ Management & Technol, Sch Sci, Dept Math, C 2 Johar Town, Lahore 54770, Pakistan
[4] Sefako Makgatho Hlth Sci Univ, Dept Math & Appl Math, Molotlegi St,POB 107, ZA-0204 Pretoria, South Africa
关键词
sequentially equivalent metrics; well-posedness; multifunction; fixed point problem (FPP); GENERALIZED SENSE; CONTRACTIONS; THEOREMS;
D O I
10.3390/math12111628
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider a class of metrics which are equivalent to the Hausdorff metric in some sense to establish the well-posedness of fixed point problems associated with multifunctions of metric spaces, satisfying various generalized contraction conditions. Examples are provided to justify the applicability of new results.
引用
收藏
页数:19
相关论文
共 50 条
  • [21] Well-Posedness Scheme for Coupled Fixed-Point Problems Using Generalized Contractions
    Sagheer, Dur-e-Shehwar
    Urooj, Isma
    Batul, Samina
    Aloqaily, Ahmad
    Mlaiki, Nabil
    AXIOMS, 2023, 12 (06)
  • [22] Some results on fixed points of multifunctions on abstract metric spaces
    Radenovic, Stojan
    Kadelburg, Zoran
    MATHEMATICAL AND COMPUTER MODELLING, 2011, 53 (5-6) : 746 - 754
  • [23] Ulam-Hyers stability, well-posedness and limit shadowing property of the fixed point problems for some contractive mappings in Ms-metric spaces
    Zhou, Mi
    Liu, Xiao-lan
    Cho, Yeol Je
    Damjanovic, BoSko
    JOURNAL OF NONLINEAR SCIENCES AND APPLICATIONS, 2017, 10 (05): : 2296 - 2308
  • [24] Well-posedness of the Cauchy problem of Ostrovsky equation in anisotropic Sobolev spaces
    Wang, Hua
    Cui, Shangbin
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2007, 327 (01) : 88 - 100
  • [25] Generalized Ulam-Hyers stability and well-posedness for fixed point equation via α-admissibility
    Phiangsungnoen, Supak
    Kumam, Poom
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2014, : 1 - 12
  • [26] Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems
    Ya-Ping Fang
    Nan-Jing Huang
    Jen-Chih Yao
    Journal of Global Optimization, 2008, 41 : 117 - 133
  • [27] WELL-POSEDNESS OF A PARABOLIC INVERSE PROBLEM
    喻文焕
    Acta Mathematicae Applicatae Sinica, 1997, (03) : 329 - 336
  • [28] Well-posedness of a parabolic inverse problem
    Yu W.
    Acta Mathematicae Applicatae Sinica, 1997, 13 (3) : 329 - 336
  • [29] Well-posedness of mixed variational inequalities, inclusion problems and fixed point problems
    Fang, Ya-Ping
    Huang, Nan-Jing
    Yao, Jen-Chih
    JOURNAL OF GLOBAL OPTIMIZATION, 2008, 41 (01) : 117 - 133
  • [30] Fixed points of Suzuki type multifunctions on metric spaces
    Beg I.
    Aleomraninejad S.M.A.
    Rendiconti del Circolo Matematico di Palermo (1952 -), 2015, 64 (2): : 203 - 207