Adapted Weighted Aggregation in Federated Learning

被引:0
作者
Tang, Yitong [1 ]
机构
[1] Univ British Columbia, Trusted & Efficient TEA Lab, 2329 West Mall, Vancouver, BC, Canada
来源
THIRTY-EIGTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 38 NO 21 | 2024年
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This study introduces FedAW, a novel federated learning algorithm that uses a weighted aggregation mechanism sensitive to the quality of client datasets, leading to better model performance and faster convergence on diverse datasets, validated using Colored MNIST.
引用
收藏
页码:23763 / 23765
页数:3
相关论文
共 6 条
[1]  
Chang H., 2023, BIAS PROPAGATION IN FEDERATED LEARNING
[2]  
Kairouz Peter, 2019, arXiv
[3]  
Karimireddy S. P., 2019, arXiv
[4]  
Li T., 2020, Fair resource allocation in federated learning
[5]  
McMahan HB, 2017, PR MACH LEARN RES, V54, P1273
[6]  
Nam J., 2020, Learning from failure: De-biasing classifier from biased classifier