Atmospheric-Pressure Continuous-Flow Methane Oxidation to Methanol and Acetic Acid Using H2O2 over the Au-Fe Catalyst

被引:1
作者
Jagtap, Anuradha V. [1 ,2 ]
Kumar, Pawan [1 ,2 ]
Gupta, Sharad [1 ]
Nagendra, Abharana [3 ]
Jha, Shambhu Nath [3 ]
Bhattacharyya, D. [3 ]
Ajithkumar, Thalasseril G. [4 ,5 ]
Vinod, C. P. [1 ,2 ]
机构
[1] CSIR Natl Chem Lab, Catalysis & Inorgan Chem Div, Pune 411008, India
[2] Acad Sci & Innovat Res AcSIR, Ghaziabad 201002, India
[3] Bhabha Atom Res Ctr BARC, Atom & Mol Phys Div, Mumbai 400085, India
[4] CSIR Natl Chem Lab, Phys & Mat Chem Div, Pune 411008, India
[5] CSIR Natl Chem Lab, Cent NMR Facil, Pune 411008, India
关键词
methane; methanol; acetic acid; continuousflow oxidation; Au-Fe silica catalysts; synergisticeffect; HIGHLY SELECTIVE OXIDATION; METAL-ORGANIC FRAMEWORKS; CO OXIDATION; CONVERSION; SITES; GOLD; MOISTURE; STATE;
D O I
10.1021/acssuschemeng.4c02993
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
An enormous value proposition exists when molecules such as acetic acid and methanol are derived from natural gas. With abundant worldwide resources, the conversion of methane to methanol (M2M) by partial oxidation or to acetic acid through C-insertion is considered one of the most enterprising chemical transformations in catalysis. Methane partial oxidation using H2O2 as the oxidant is reported at high-pressure conditions with an excess of oxidant. In this work, significant catalytic challenges successfully tackled are the continuous partial oxidation of methane to methanol and acetic acid at atmospheric pressure. Under continuous flow and at atmospheric pressure, a modified silica-supported bimetallic (AuFeHS) catalyst catalyzed the conversion of methane to methanol using H2O2 with an impressive yield of 224 mmol/g(Fe+Au). Cofeeding of CO in the stream produces acetic acid, demonstrating a selectivity switch from methanol with an overall yield of 92 mmol/g(Fe+Au).
引用
收藏
页码:8958 / 8967
页数:10
相关论文
共 62 条
[1]   Low temperature selective oxidation of methane to methanol using titania supported gold palladium copper catalysts [J].
Ab Rahim, Mohd Hasbi ;
Armstrong, Robert D. ;
Hammond, Ceri ;
Dimitratos, Nikolaos ;
Freakley, Simon J. ;
Forde, Michael M. ;
Morgan, David J. ;
Lalev, Georgi ;
Jenkins, Robert L. ;
Lopez-Sanchez, Jose Antonio ;
Taylor, Stuart H. ;
Hutchings, Graham J. .
CATALYSIS SCIENCE & TECHNOLOGY, 2016, 6 (10) :3410-3418
[2]   Aqueous Au-Pd colloids catalyze selective CH4 oxidation to CH3OH with O2 under mild conditions [J].
Agarwal, Nishtha ;
Freakley, Simon J. ;
McVicker, Rebecca U. ;
Althahban, Sultan M. ;
Dimitratos, Nikolaos ;
He, Qian ;
Morgan, David J. ;
Jenkins, Robert L. ;
Willock, David J. ;
Taylor, Stuart H. ;
Kiely, Christopher J. ;
Hutchings, Graham J. .
SCIENCE, 2017, 358 (6360) :223-226
[3]   Harnessing of Diluted Methane Emissions by Direct Partial Oxidation of Methane to Methanol over Cu/Mordenite [J].
Alvarez, Mauro ;
Marin, Pablo ;
Ordonez, Salvador .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2021, 60 (26) :9409-9417
[4]   Metal-Organic Framework-Encaged Monomeric Cobalt(III) Hydroperoxides Enable Chemoselective Methane Oxidation to Methanol [J].
Antil, Neha ;
Chauhan, Manav ;
Akhtar, Naved ;
Newar, Rajashree ;
Begum, Wahida ;
Malik, Jaideep ;
Manna, Kuntal .
ACS CATALYSIS, 2022, 12 (18) :11159-11168
[5]   High-efficiency direct methane conversion to oxygenates on a cerium dioxide nanowires supported rhodium single-atom catalyst [J].
Bai, Shuxing ;
Liu, Fangfang ;
Huang, Bolong ;
Li, Fan ;
Lin, Haiping ;
Wu, Tong ;
Sun, Mingzi ;
Wu, Jianbo ;
Shao, Qi ;
Xu, Yong ;
Huang, Xiaoqing .
NATURE COMMUNICATIONS, 2020, 11 (01)
[6]   Finding optimal surface sites on heterogeneous catalysts by counting nearest neighbors [J].
Calle-Vallejo, Federico ;
Tymoczko, Jakub ;
Colic, Viktor ;
Vu, Quang Huy ;
Pohl, Marcus D. ;
Morgenstern, Karina ;
Loffreda, David ;
Sautet, Philippe ;
Schuhmann, Wolfgang ;
Bandarenka, Aliaksandr S. .
SCIENCE, 2015, 350 (6257) :185-189
[7]   The selective oxidation of methane to methanol using in situ generated H2O2 over palladium-based bimetallic catalysts [J].
Carter, James H. ;
Lewis, Richard J. ;
Demetriou, Nikolas ;
Williams, Christopher ;
Davies, Thomas E. ;
Qin, Tian ;
Dummer, Nicholas F. ;
Morgan, David J. ;
Willock, David J. ;
Liu, Xi ;
Taylor, Stuart H. ;
Hutchings, Graham J. .
CATALYSIS SCIENCE & TECHNOLOGY, 2023, 13 (20) :5848-5858
[8]   Transition metal oxide complexes as molecular catalysts for selective methane to methanol transformation: any prospects or time to retire? [J].
Claveau, Emily E. E. ;
Sader, Safaa ;
Jackson, Benjamin A. A. ;
Khan, Shahriar N. N. ;
Miliordos, Evangelos .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (07) :5313-5326
[9]   Room-Temperature Methane Conversion by Graphene-Confined Single Iron Atoms [J].
Cui, Xiaoju ;
Li, Haobo ;
Wang, Yan ;
Hu, Yuanli ;
Hua, Lei ;
Li, Haiyang ;
Han, Xiuwen ;
Liu, Qingfei ;
Yang, Fan ;
He, Limin ;
Chen, Xiaoqi ;
Li, Qingyun ;
Xiao, Jianping ;
Deng, Dehui ;
Bao, Xinhe .
CHEM, 2018, 4 (08) :1902-1910
[10]   Vital role of moisture in the catalytic activity of supported gold nanoparticles [J].
Daté, M ;
Okumura, M ;
Tsubota, S ;
Haruta, M .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2004, 43 (16) :2129-2132