Optimizing interfacial modification for enhanced performance of Na3V2(PO4)3 cathode in sodium-ion batteries

被引:14
作者
Pan, Mengwei [1 ]
Wang, Yuxuan [1 ]
Liu, Yang [1 ]
Zhang, Mengjie [1 ]
Liu, Xichang [3 ]
Yuan, Yanle [1 ]
Zhou, Yuchen [1 ]
Liu, Weifang [2 ]
Chen, Tao [1 ]
Liu, Kaiyu [1 ]
机构
[1] Cent South Univ, Coll Chem & Chem Engn, Hunan Prov Key Lab Chem Power Sources, Changsha 410083, Peoples R China
[2] Hunan Univ Sci & Technol, Coll Chem & Chem Engn, Xiangtan 411201, Peoples R China
[3] Hunan Univ, Coll Chem & Chem Engn, Changsha 410082, Peoples R China
基金
中国国家自然科学基金;
关键词
Na3V2(PO4)(3); Sodium-ion batteries; Interfacial modification; High capacity; Full cell; NANOPARTICLES; CAPACITANCE; COMPOSITES; GRAPHENE; NITROGEN; NASICON; STORAGE;
D O I
10.1016/j.cej.2024.153396
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
A novel cathode material, Na3V2(PO4)(3)C@CNT (NVP/C@CNT), was designed and synthesized by a low-temperature solid-phase drying ball milling method. The nanoparticles are covered by an amorphous carbon layer, and simultaneously enveloped and embedded by carbon nanotubes on the surface. Consequently, a carbon network consisting of carbon nanotubes and amorphous carbon layers is formed in the material. Notably, no phase transition during the intercalation process of sodium ions, confirming the stable crystal structure, which ensures the stability and reversibility of the large-capacity cathode in the large-volume change. The addition of CNTs can regulate the size of NVP particles, increase the contact area between NVP and electrolyte, leading to an enhancement in the sodium ion diffusion coefficient. The NVP/C@CNT electrode exhibits a capacity of 114.5 mA h g(-1) at 0.1 C. After 2650 cycles, the discharge capacity retention rate is 98.2 % at 10 C. Even at 20 C, the discharge capacity is still 93.3 mA h g(-1) after 2710 cycles, with a retention rate of 99.5 %. This work provides a feasible approach for the design of low-cost, long-life, high-performance cathode materials for sodium-ion batteries.
引用
收藏
页数:10
相关论文
共 72 条
[71]   Toward high-performance sodium storage cathode: Construction and purification of carbon-coated Na3V2(PO4)2F3 materials [J].
Zhu, Pengfei ;
Peng, Wenjie ;
Guo, Huajun ;
Li, Xinhai ;
Wang, Zhixing ;
Wang, Ding ;
Duan, Jianguo ;
Wang, Jiexi ;
Yan, Guochun .
JOURNAL OF POWER SOURCES, 2022, 546
[72]   Dual-Carbon-Decorated Na3V2(PO4)3 Material for Sodium-Ion Batteries [J].
Zhu, Wenhao ;
Mao, Qianlun ;
Jia, Yuexin ;
Ni, Jiangfeng ;
Gao, Lijun .
JOURNAL OF ELECTRONIC MATERIALS, 2023, 52 (02) :836-846