GENERALIZATIONS OF HARDY-TYPE INEQUALITIES BY THE HERMITE INTERPOLATING POLYNOMIAL

被引:0
作者
Himmelreich, Kristina Krulic [1 ]
Pecaric, Josip [2 ]
Pokaz, Dora [3 ]
Praljak, Marjan [4 ]
机构
[1] Univ Zagreb, Fac Text Technol, Prilaz Baruna Filipovica 28a, Zagreb 10000, Croatia
[2] Croatian Acad Sci & Arts, Trg Nikole Subica Zrinskog 11, Zagreb 10000, Croatia
[3] Univ Zagreb, Fac Civil Engn, Kaciceva 26, Zagreb 10000, Croatia
[4] Univ Zagreb, Fac Food Technol & Biotechnol, Pierottijeva 6, Zagreb 10000, Croatia
来源
JOURNAL OF MATHEMATICAL INEQUALITIES | 2024年 / 18卷 / 02期
关键词
Hardy type inequality; Hermite interpolating polynomial; Green function; Taylor interpolating polynomial; Chebysev functional; Gru<spacing diaeresis>ss type inequalities; Ostrowski type inequalities;
D O I
10.7153/jmi-2024-18-24
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper we obtain generalizations of Hardy-type inequalities for convex functions of the higher order by applying Hermite interpolating polynomials. The results for particular cases: Lagrange, ( m , n - m ) and two-point Taylor interpolating polynomials are also considered. Finally, we derive the Gru<spacing diaeresis>ss and Ostrowski type inequalities related to these generalizations.
引用
收藏
页码:443 / 455
页数:13
相关论文
共 20 条
[1]  
AGARWAL R. P., 2016, J. Inequal. Appl., V6
[2]  
Agarwal RP, 1993, ERROR INEQUALITIES P
[3]  
ATKINSON K., 1991, An Introduction to Numerical Analysis, V2nd, DOI DOI 10.1002/0471667196.ESS1837
[4]   Generalizations of Sherman's inequality [J].
Bradanovic, S. Ivelic ;
Pearic, J. .
PERIODICA MATHEMATICA HUNGARICA, 2017, 74 (02) :197-219
[5]   SOME NEW OSTROWSKI-TYPE BOUNDS FOR THE CEBYSEV FUNCTIONAL AND APPLICATIONS [J].
Cerone, P. ;
Dragomir, S. S. .
JOURNAL OF MATHEMATICAL INEQUALITIES, 2014, 8 (01) :159-170
[6]  
Chebyshev P.L, 1882, Proc. Math. Soc. Charkov, V2, P93
[7]  
HARDY G. H., 1925, Messenger of Mathematics, V54, P150
[8]   Generalizations of Hardy Type Inequalities by Abel-Gontscharoff's Interpolating Polynomial [J].
Himmelreich, Kristina Krulic ;
Pecaric, Josip ;
Pokaz, Dora ;
Praljak, Marjan .
MATHEMATICS, 2021, 9 (15)
[9]   SOME NEW HARDY TYPE INEQUALITIES WITH GENERAL KERNELS II [J].
Himmelreich, Kristina Krulic ;
Pecaric, Josip .
MATHEMATICAL INEQUALITIES & APPLICATIONS, 2016, 19 (01) :73-84
[10]  
IVELI S., 2017, Journal of Inequalities and Special functions, P18