Effects of a knowledge graph-based learning approach on student performance and experience

被引:0
|
作者
Qu, Kechen [1 ]
Li, Kam Cheong [2 ,3 ]
Wong, Billy Tak-Ming [3 ,4 ]
Liu, Maggie [4 ]
Chan, Venus [5 ]
Lee, Lap-Kei [6 ]
机构
[1] Open Univ China, Credit Bank, Beijing 100039, Peoples R China
[2] Hong Kong Metropolitan Univ, Homantin, Hong Kong, Peoples R China
[3] Hong Kong Metropolitan Univ, Inst Res Open & Innovat Educ, Homantin, Hong Kong, Peoples R China
[4] Hong Kong Metropolitan Univ, Homantin, Hong Kong, Peoples R China
[5] Hong Kong Metropolitan Univ, Dept Humanities Language & Translat, Homantin, Hong Kong, Peoples R China
[6] Hong Kong Metropolitan Univ, Sch Sci & Technol, Homantin, Hong Kong, Peoples R China
关键词
knowledge graph; ontology; competency-based education; CBE; learning performance; learning experience; COMPETENCE-BASED EDUCATION; SYSTEM; WEB;
D O I
10.1504/IJMLO.2024.140169
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This paper presents a knowledge graph-based learning approach, featuring knowledge graphs for concept visualisation and information retrieval. It illustrates the development of a learning system which incorporates a competency-based knowledge graph covering the dimensions of knowledge, skill, and ability. The system was evaluated for a learning task on English academic reading. A total of 96 undergraduate students were invited to complete the learning task, half of which were allocated to the experimental group. This group used the knowledge graph-based approach for learning. The other half served as the control group, who learned with contents organised in a conventional manner. The evaluation results revealed that the experimental group performed significantly better than the control group. The students who learned with the knowledge graph-based approach provided positive feedback on their learning experience, and suggested desired features such as personalised learning, data tracking and analysis, and structured learning contents.
引用
收藏
页数:23
相关论文
共 50 条
  • [1] A novel knowledge graph-based optimization approach for resource allocation in discrete manufacturing workshops
    Zhou, Bin
    Bao, Jinsong
    Li, Jie
    Lu, Yuqian
    Liu, Tianyuan
    Zhang, Qiwan
    ROBOTICS AND COMPUTER-INTEGRATED MANUFACTURING, 2021, 71
  • [2] TaxoFinder: A Graph-Based Approach for Taxonomy Learning
    Kang, Yong-Bin
    Haghigh, Pari Delir
    Burstein, Frada
    IEEE TRANSACTIONS ON KNOWLEDGE AND DATA ENGINEERING, 2016, 28 (02) : 524 - 536
  • [3] Intelligent personalised exercise recommendation: A weighted knowledge graph-based approach
    Lv, Pin
    Wang, Xiaoxin
    Xu, Jia
    Wang, Junbin
    COMPUTER APPLICATIONS IN ENGINEERING EDUCATION, 2021, 29 (05) : 1403 - 1419
  • [4] A knowledge graph-based bio-inspired design approach for knowledge retrieval and reasoning
    Chen, Liuqing
    Cai, Zebin
    Jiang, Zhaojun
    Sun, Lingyun
    Childs, Peter
    Zuo, Haoyu
    JOURNAL OF ENGINEERING DESIGN, 2024,
  • [5] A Hybrid Pattern Knowledge Graph-Based API Recommendation Approach
    Wang, Guan
    Wang, Weidong
    Li, Dian
    ARTIFICIAL INTELLIGENCE, CICAI 2022, PT III, 2022, 13606 : 465 - 476
  • [6] Understanding Horizon 2020 Data: A Knowledge Graph-Based Approach
    Giarelis, Nikolaos
    Karacapilidis, Nikos
    APPLIED SCIENCES-BASEL, 2021, 11 (23):
  • [7] A knowledge graph-based approach for exploring railway operational accidents
    Liu, Jintao
    Schmid, Felix
    Li, Keping
    Zheng, Wei
    RELIABILITY ENGINEERING & SYSTEM SAFETY, 2021, 207
  • [8] A Knowledge Graph-Based Approach for Situation Comprehension in Driving Scenarios
    Halilaj, Lavdim
    Dindorkar, Ishan
    Luttin, Jurgen
    Rothermel, Susanne
    SEMANTIC WEB, ESWC 2021, 2021, 12731 : 699 - 716
  • [9] A knowledge graph-based structured representation of assembly process planning combined with deep learning
    Shi, Xiaolin
    Tian, Xitian
    Ma, Liping
    Wu, Xv
    Gu, Jianguo
    INTERNATIONAL JOURNAL OF ADVANCED MANUFACTURING TECHNOLOGY, 2024, 133 (3-4): : 1807 - 1821
  • [10] A Knowledge Graph-based Interactive Recommender System Using Reinforcement Learning
    Sun, Ruoxi
    Yan, Jun
    Ren, Fenghui
    2022 TENTH INTERNATIONAL CONFERENCE ON ADVANCED CLOUD AND BIG DATA, CBD, 2022, : 73 - 78