Toward Zero-Trust Security for the Metaverse

被引:26
作者
Cheng, Ruizhi [1 ]
Chen, Songqing [2 ]
Han, Bo [2 ]
机构
[1] George Mason Univ, Dept Comp Sci, Fairfax, VA 22030 USA
[2] George Mason Univ, Comp Sci, Fairfax, VA USA
关键词
Authentication; Biometrics (access control); Metaverse; Security; Biological system modeling; Data models; Privacy; Zero Trust; Trust management;
D O I
10.1109/MCOM.018.2300095
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
By focusing on immersive interaction among users, the burgeoning Metaverse can be viewed as a natural extension of existing social media. Similar to traditional online social networks, there are numerous security and privacy issues in the Metaverse (e.g., attacks on user authentication and impersonation). In this article, we develop a holistic research agenda for zero-trust user authentication in social virtual reality (VR), an early prototype of the Metaverse. Our proposed research includes four concrete steps: investigating biometrics-based authentication that is suitable for continuously authenticating VR users, leveraging federated learning (FL) for protecting user privacy in biometric data, improving the accuracy of continuous VR authentication with multimodal data, and boosting the usability of zero-trust security with adaptive VR authentication. Our preliminary study demonstrates that conventional FL algorithms are not well suited for biometrics-based authentication of VR users, leading to an accuracy of less than 10%. We discuss the root cause of this problem, the associated open challenges, and several future directions for realizing our research vision.
引用
收藏
页码:156 / 162
页数:7
相关论文
共 15 条
[1]  
Bhalla A., 2021, P ACM CYB PHYS SYST
[2]   Will Metaverse Be NextG Internet? Vision, Hype, and Reality [J].
Cheng, Ruizhi ;
Wu, Nan ;
Chen, Songqing ;
Han, Bo .
IEEE NETWORK, 2022, 36 (05) :197-204
[3]  
Cheng Ruizhi, 2022, P ACM IMC
[4]  
Feng K., 2017, P ACM MOBICOM
[5]   Mobile Immersive Computing: Research Challenges and the Road Ahead [J].
Han, Bo .
IEEE COMMUNICATIONS MAGAZINE, 2019, 57 (10) :112-118
[6]  
Hosseini H, 2021, PR MACH LEARN RES, V139
[7]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210
[8]  
Liu C., 2022, P AAAI, P1
[9]  
McMahan HB, 2017, PR MACH LEARN RES, V54, P1273
[10]   Using Siamese Neural Networks to Perform Cross-System Behavioral Authentication in Virtual Reality [J].
Miller, Robert ;
Banerjee, Natasha Kholgade ;
Banerjee, Sean .
2021 IEEE VIRTUAL REALITY AND 3D USER INTERFACES (VR), 2021, :140-149