Predicting stock price of construction companies using weighted ensemble learning

被引:0
|
作者
Song, Xinyuan [1 ]
机构
[1] Natl Univ Singapore, Dept Stat & Data Sci, Lower Kent Ridge Rd, Singapore 119077, Singapore
关键词
Ensemble learning; Forecasting stock price of construction; companies; Artificial Intelligence; Machine Learning;
D O I
10.1016/j.heliyon.2024.e31604
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Modeling the behavior of stock price data has always been one of the challenging applications of Artificial Intelligence (AI) and Machine Learning (ML) due to its high complexity and dependence on various conditions. Recent studies show that this will be difficult to do with just one learning model. The problem can be more complex for companies in the construction sector, due to the dependency of their behavior on more conditions. This study aims to provide a hybrid model for improving the accuracy of prediction for the stock price index of companies in the construction section. The contribution of this paper can be considered as follows: First, a combination of several prediction models is used to predict stock prices so that learning models can cover each other's errors. In this research, an ensemble model based on Artificial Neural Network (ANN), Gaussian Process Regression (GPR), and Classification and Regression Tree (CART) is presented for predicting the stock price index. Second, the optimization technique is used to determine the effect of each learning model on the prediction result. For this purpose, first, all three mentioned algorithms process the data simultaneously and perform the prediction operation. Then, using the Cuckoo Search (CS) algorithm, the output weight of each algorithm is determined as a coefficient. Finally, using the ensemble technique, these results are combined and the final output is generated through weighted averaging on optimal coefficients. The proposed system was implemented, and its efficiency was evaluated by real stock data of construction companies. The results showed that using CS optimization in the proposed ensemble system is highly effective in reducing prediction error. According to the results, the proposed system can predict the price index with an average accuracy of 96.6 %, which shows a reduction of at least 2.4 % in prediction error compared to the previous methods. Comparing the evaluation results of the proposed system with similar algorithms indicates that our model is more accurate and can be useful for predicting the stock price index in real-world scenarios.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Construction of an Ensemble Scheme for Stock Price Prediction Using Deep Learning Techniques
    Appati, Justice Kwame
    Denwar, Ismail Wafaa
    Owusu, Ebenezer
    Soli, Michael Agbo Tettey
    INTERNATIONAL JOURNAL OF INTELLIGENT INFORMATION TECHNOLOGIES, 2021, 17 (02) : 72 - 95
  • [2] Predicting Stock prices using Ensemble Learning and Sentiment Analysis
    Pasupulety, Ujjwal
    Anees, Aiman Abdullah
    Anmol, Subham
    Mohan, Biju R.
    2019 IEEE SECOND INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2019, : 215 - 222
  • [3] Predicting Miscarriage and Stillbirth Using Weighted Ensemble Machine Learning
    Lokhande, Anagha
    Gimovsky, Alexis
    Sarkar, Indra
    OBSTETRICS AND GYNECOLOGY, 2023, 141 : 28S - 28S
  • [4] Predicting Stock Price Bubbles in China Using Machine Learning
    Wang, Yunxi
    Yampaka, Tongjai
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2024, 15 (11) : 415 - 425
  • [5] Predicting Stock Price Bubbles in China Using Machine Learning
    Wang, Yunxi
    Yampaka, Tongjai
    International Journal of Advanced Computer Science and Applications, 2024, 15 (11): : 415 - 425
  • [6] Predicting stock splits using ensemble machine learning and SMOTE oversampling
    Li, Ang
    Liu, Mark
    Sheather, Simon
    PACIFIC-BASIN FINANCE JOURNAL, 2023, 78
  • [7] Predicting Stock Market Price: A Logical Strategy using Deep Learning
    Biswas, Milon
    Shome, Atanu
    Islam, Md Ashraful
    Nova, Arafat Jahan
    Ahmed, Shamim
    11TH IEEE SYMPOSIUM ON COMPUTER APPLICATIONS & INDUSTRIAL ELECTRONICS (ISCAIE 2021), 2021, : 218 - 223
  • [8] Stock price prediction using multi-scale nonlinear ensemble of deep learning and evolutionary weighted support vector regression
    Wang, Jujie
    Zhuang, Zhenzhen
    Gao, Dongming
    Li, Yang
    Feng, Liu
    STUDIES IN NONLINEAR DYNAMICS AND ECONOMETRICS, 2023, 27 (03): : 397 - 421
  • [9] Stock price prediction using intelligent models, Ensemble Learning and feature selection
    Nezhad, Mohammad Taghi Faghihi
    Rezaei, Mahdi
    2022 SECOND INTERNATIONAL CONFERENCE ON DISTRIBUTED COMPUTING AND HIGH PERFORMANCE COMPUTING (DCHPC), 2022, : 15 - 25
  • [10] A stock price manipulation detecting model with ensemble learning
    Liu, Chengming
    Li, Shaochuan
    Shi, Lei
    EXPERT SYSTEMS WITH APPLICATIONS, 2024, 248