Deciphering regulatory patterns in a mouse model of hyperoxia-induced acute lung injury

被引:0
作者
Chen, Yundi [1 ]
Liu, Jinwen [2 ,3 ]
Qin, Han [4 ]
Qin, Song [5 ]
Huang, Xinyang [6 ]
Wei, Chunyan [7 ]
Hu, Xiaolin [2 ,6 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Med Coll, Wuhan, Hubei, Peoples R China
[2] Shanghai Jiao Tong Univ, Sch Med, Sch Publ Hlth, Shanghai, Peoples R China
[3] Shanghai Jiao Tong Univ, Sch Med, Coll Hlth Sci & Technol, Dept Nutr, Shanghai, Peoples R China
[4] Kweichow Moutai Hosp, Dept Resp & Crit Care Med, Zunyi, Guizhou, Peoples R China
[5] Zunyi Med Univ, Dept Crit Care Med, Affiliated Hosp, Zunyi, Guizhou, Peoples R China
[6] Shanghai Jiao Tong Univ, Sch Publ Hlth, Sch Med, Ctr Single Cell Omics, Shanghai, Peoples R China
[7] Fudan Univ, Dept Gynecol, Obstet & Gynecol Hosp, Shanghai, Peoples R China
关键词
Hyperoxia acute lung injury; Pathogenesis; RNA-seq; Alternative splicing; ceRNA; EXPRESSION; INCREASES; APOPTOSIS; DATABASE; DEATH; CELLS; CARE;
D O I
10.7717/peerj.18069
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background. . Oxygen therapy plays a pivotal role in treating critically ill patients in the intensive care unit (ICU). However, excessive oxygen concentrations can precipitate hyperoxia, leading to damage in multiple organs, with a notable effect on the lungs. Hyperoxia condition may lead to hyperoxia-induced acute lung injury (HALI), deemed as a milder form of acute respiratory distress syndrome (ARDS). Given its clinical importance and practical implications, there is a compelling need to investigate the underlying pathogenesis and comprehensively understand the regulatory mechanisms implicated in the development of HALI Results. . In this study, we conducted a mouse model with HALI and performed regulatory mechanism analysis using RNA-seq on both HALI and control group. Comprehensive analysis revealed 727 genes of significant differential expression, including 248 long non-coding RNAs (lncRNAs). Also, alternative splicing events were identified from sequencing results. Notably, we observed up-regulation or abnormal alternative splicing of genes associated with immune response and ferroptosis under hyperoxia conditions. Utilizing weighted gene co-expression network analysis (WGCNA), we ascertained that genes involved in immune response formed a distinct cluster, showcasing an up-regulated pattern in hyperoxia, consistent with previous studies. Furthermore, a competing endogenous RNA (ceRNA) network was constructed, including 78 differentially expressed mRNAs and six differentially expressed lncRNAs, including H19. These findings uncover the intricate interplay of multiple transcriptional regulatory mechanisms specifically tailored to the pulmonary defense against HALI, substantiating the importance of these non-coding RNAs in this disease context. Conclusions. . Our results provide new insights into the potential mechanisms and underlying pathogenesis in the development of HALI at the post-transcriptional level. The findings of this study reveal potential regulatory interactions and biological roles of specific lncRNAs and genes, such as H19 and Sox9, encompassing driven gene expression patterns, alternative splicing events, and lncRNA-miRNA-mRNA ceRNA networks. These findings may pave the way for advancing therapeutic strategies and reducing the risk associated with oxygen treatment for patients.
引用
收藏
页数:27
相关论文
共 50 条
  • [11] Dexmedetomidine Alleviates Hyperoxia-Induced Acute Lung Injury via Inhibiting NLRP3 Inflammasome Activation
    Zhang, Qiuyue
    Wu, Di
    Yang, Yang
    Liu, Tingting
    Liu, Hongyu
    CELLULAR PHYSIOLOGY AND BIOCHEMISTRY, 2017, 42 (05) : 1907 - 1919
  • [12] Probucol attenuates hyperoxia-induced lung injury in mice
    Kawaguchi, Tomonobu
    Yanagihara, Toyoshi
    Yokoyama, Tetsuya
    Suetsugu-Ogata, Saiko
    Hamada, Naoki
    Harada-Ikeda, Chika
    Suzuki, Kunihiro
    Maeyama, Takashige
    Kuwano, Kazuyoshi
    Nakanishi, Yoichi
    PLOS ONE, 2017, 12 (04):
  • [13] Alveolar cell death in hyperoxia-induced lung injury
    Pagano, A
    Barazzone-Argiroffo, C
    APOPTOSIS: FROM SIGNALING PATHWAYS TO THERAPEUTIC TOOLS, 2003, 1010 : 405 - 416
  • [14] Dual Oxidase 2 in Lung Epithelia Is Essential for Hyperoxia-Induced Acute Lung Injury in Mice
    Kim, Min-Ji
    Ryu, Jae-Chan
    Kwon, Younghee
    Lee, Suhee
    Bae, Yun Soo
    Yoon, Joo-Heon
    Ryu, Ji-Hwan
    ANTIOXIDANTS & REDOX SIGNALING, 2014, 21 (13) : 1803 - 1818
  • [15] CXCR4 Blockade Attenuates Hyperoxia-Induced Lung Injury in Neonatal Rats
    Drummond, Shelley
    Ramachandran, Shalini
    Torres, Eneida
    Huang, Jian
    Hehre, Dorothy
    Suguihara, Cleide
    Young, Karen C.
    NEONATOLOGY, 2015, 107 (04) : 304 - 311
  • [16] BCL6 attenuates hyperoxia-induced lung injury by inhibiting NLRP3-mediated inflammation in fetal mouse
    Chen, Dan
    Zhao, Hui-min
    Deng, Xian-hui
    Li, Sheng-peng
    Zhou, Mei-hui
    Wu, Ya-xian
    Tong, Ying
    Yu, Ren-qiang
    Pang, Qing-feng
    EXPERIMENTAL LUNG RESEARCH, 2024, 50 (01) : 25 - 41
  • [17] Exogenous interleukin-10 attenuates hyperoxia-induced acute lung injury in mice
    Li, Huai-Dong
    Zhang, Qing-Xiang
    Mao, Zhi
    Xu, Xing-Jie
    Li, Nai-Yi
    Zhang, Hui
    EXPERIMENTAL PHYSIOLOGY, 2015, 100 (03) : 331 - 340
  • [18] Treatment with exogenous hydrogen sulfide attenuates hyperoxia-induced acute lung injury in mice
    Li, Huai-Dong
    Zhang, Zhao-Rui
    Zhang, Qing-Xiang
    Qin, Zhi-Chu
    He, Deng-Ming
    Chen, Jin-Song
    EUROPEAN JOURNAL OF APPLIED PHYSIOLOGY, 2013, 113 (06) : 1555 - 1563
  • [19] Bcl-2 overexpression in type II epithelial cells does not prevent hyperoxia-induced acute lung injury in mice
    Metrailler-Ruchonnet, Isabelle
    Pagano, Alessandra
    Carnesecchi, Stephanie
    Khatib, Karim
    Herrera, Pedro
    Donati, Yves
    Bron, Camille
    Barazzone, Constance
    AMERICAN JOURNAL OF PHYSIOLOGY-LUNG CELLULAR AND MOLECULAR PHYSIOLOGY, 2010, 299 (03) : L312 - L322
  • [20] Pentoxifylline and prevention of hyperoxia-induced lung injury in neonatal rats
    Almario, Beatriz
    Wu, Shu
    Peng, Jinghong
    Alapati, Deepthi
    Chen, Shaoyi
    Sosenko, Ilene R. S.
    PEDIATRIC RESEARCH, 2012, 71 (05) : 583 - 589