Marine algae oils from Phaeodactylum tricornutum and Laminaria japonica alleviate obesity, insulin resistance, and gut microbiota dysbiosis in high-fat diet-fed mice

被引:1
|
作者
Lu, Lei [1 ]
Li, Shu-Xian [1 ]
Li, Xiao-Yun [1 ]
Ma, Ji-Rong [1 ]
He, Jin-Xing [1 ]
Xing, Han-Zhu [1 ]
Chen, Chen [2 ,3 ]
Miyashita, Kazuo [4 ]
Yang, Yu-Hong [1 ,5 ]
Du, Lei [2 ,3 ]
机构
[1] Qilu Univ Technol, Shandong Acad Sci, Sch Food Sci & Engn, 3501 Daxue Rd, Jinan 250353, Shandong, Peoples R China
[2] Shandong Univ, Jinan Cent Hosp, Res Ctr Translat Med, 105 Jiefang Rd, Jinan 250013, Shandong, Peoples R China
[3] Shandong Univ, Cheeloo Coll Med, Sch Publ Hlth, Dept Nutr & Food Hyg, 44 Wenhuaxi Rd, Jinan 250012, Shandong, Peoples R China
[4] Obihiro Univ Agr & Vet Med, Ctr Ind Univ Collaborat, Inada Cho, Obihiro, Hokkaido 0808555, Japan
[5] Shandong Haizhibao Ocean Sci & Technol Co Ltd, 259 Pinghai East Rd, Rongcheng City 264300, Shandong, Peoples R China
关键词
Marine algae oil; Phaeodactylum tricornutum; Laminaria japonica; Obesity; Insulin resistance; Gut microbiota; METABOLIC SYNDROME; LIPID-METABOLISM; INFLAMMATION; ACIDS; OMEGA-3-FATTY-ACIDS; ACCUMULATION; FUCOXANTHIN; IMPACT;
D O I
10.1016/j.jff.2024.106234
中图分类号
TS2 [食品工业];
学科分类号
0832 ;
摘要
The present study was aimed to investigate the effects of Phaeodactylum tricornutum oil (PO) and Laminaria japonica oil (LO) against obesity and other metabolic disorders in a high-fat diet (HFD) induced obese mouse model. The results revealed that PO or LO supplementation significantly reduced HFD-induced body weight gain, hyperlipemia, and fat accumulation in mice. PO or LO supplementation also inhibited SREBP-1-mediated de novo lipogenesis and PPAR gamma-mediated adipogenesis, as well as enhanced PPAR alpha-mediated fatty acid beta-oxidation in the WAT and liver of HFD-fed mice. Moreover, PO or LO supplementation attenuated low-grade chronic inflammation, hyperglycemia and insulin resistance in obese mice. Furthermore, Dietary PO or LO also modulated HFDinduced gut microbiota dysbiosis and increased the SCFAs production. More importantly, our results also manifested that the ameliorative effect of PO and LO against HFD-induced obesity, IR and gut microbiota dysbiosis was comparable, but was superior than that of krill oil and fish oil.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Astragalin and rutin restore gut microbiota dysbiosis, alleviate obesity and insulin resistance in high-fat diet-fed C57BL/6J mice
    Ganjayi, Muni Swamy
    Sankaran, Karunakaran Reddy
    Meriga, Balaji
    Bhatia, Ruchika
    Sharma, Shikha
    Kondepudi, Kanthi Kiran
    FOOD SCIENCE AND HUMAN WELLNESS, 2024, 13 (06) : 3256 - 3265
  • [2] Modulation of Gut Microbiota by Fucoxanthin During Alleviation of Obesity in High-Fat Diet-Fed Mice
    Sun, Xiaowen
    Zhao, Hailong
    Liu, Zonglin
    Sun, Xun
    Zhang, Dandan
    Wang, Shuhui
    Xu, Ying
    Zhang, Guofang
    Wang, Dongfeng
    JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY, 2020, 68 (18) : 5118 - 5128
  • [3] Anti-obesity effects of Laminaria japonica fucoidan in high-fat diet-fed mice vary with the gut microbiota structure
    Zhang, Xueqian
    You, Ying
    Wang, LiLong
    Ai, Chunqing
    Huang, Linjuan
    Wang, Songtao
    Wang, Zhongfu
    Song, Shuang
    Zhu, Beiwei
    FOOD & FUNCTION, 2022, 13 (11) : 6259 - 6270
  • [4] Antioxidant Effect of Phaeodactylum tricornutum in Mice Fed High-fat Diet
    Kang, Min-Jung
    Kim, Sang Moo
    Jeong, Soo-Mi
    Choi, Ha-Neul
    Jang, Yang-Hee
    Kim, Jung-In
    FOOD SCIENCE AND BIOTECHNOLOGY, 2013, 22 (01) : 107 - 113
  • [5] Supplementation With Lycium barbarum Polysaccharides Reduce Obesity in High-Fat Diet-Fed Mice by Modulation of Gut Microbiota
    Yang, Mei
    Yin, Yexin
    Wang, Fang
    Zhang, Haihan
    Ma, Xiaokang
    Yin, Yulong
    Tan, Bie
    Chen, Jiashun
    FRONTIERS IN MICROBIOLOGY, 2021, 12
  • [6] Tremella fuciformis polysaccharide reduces obesity in high-fat diet-fed mice by modulation of gut microbiota
    He, Gang
    Chen, Tangcong
    Huang, Lifen
    Zhang, Yiyuan
    Feng, Yanjiao
    Qu, Shaokui
    Yin, Xiaojing
    Liang, Li
    Yan, Jun
    Liu, Wei
    FRONTIERS IN MICROBIOLOGY, 2022, 13
  • [7] Antrodia cinnamomea reduces obesity and modulates the gut microbiota in high-fat diet-fed mice
    Chang, C-J
    Lu, C-C
    Lin, C-S
    Martel, J.
    Ko, Y-F
    Ojcius, D. M.
    Wu, T-R
    Tsai, Y-H
    Yeh, T-S
    Lu, J-J
    Lai, H-C
    Young, J. D.
    INTERNATIONAL JOURNAL OF OBESITY, 2018, 42 (02) : 231 - 243
  • [8] Propionylated high-amylose maize starch alleviates obesity by modulating gut microbiota in high-fat diet-fed mice
    Xie, Zhuqing
    Yao, Minghua
    Castro-Mejia, Josue L.
    Ma, Ming
    Zhu, Yuyan
    Fu, Xiong
    Huang, Qiang
    Zhang, Bin
    JOURNAL OF FUNCTIONAL FOODS, 2023, 102
  • [9] The role of gut microbiota in the resistance to obesity in mice fed a high fat diet
    Cao, Wanxiu
    Chin, Yaoxian
    Chen, Xin
    Mi, Ye
    Xue, Changhu
    Wang, Yuming
    Tang, Qingjuan
    INTERNATIONAL JOURNAL OF FOOD SCIENCES AND NUTRITION, 2020, 71 (04) : 453 - 463
  • [10] N-Acetylcysteine alleviates gut dysbiosis and glucose metabolic disorder in high-fat diet-fed mice
    Zheng, Junping
    Yuan, Xubing
    Zhang, Chen
    Jia, Peiyuan
    Jiao, Siming
    Zhao, Xiaoming
    Yin, Heng
    Du, Yuguang
    Liu, Hongtao
    JOURNAL OF DIABETES, 2019, 11 (01) : 32 - 45