Constructing honeycomb structured metastructure absorber based on FeSiAl@CeO2 flakes for ultra-broadband microwave absorption

被引:5
作者
Shen, Fengyuan [1 ]
Wan, Yuanhong [1 ]
Sun, Yuping [1 ]
Liu, Xianguo [1 ]
机构
[1] Hangzhou Dianzi Univ, Inst Adv Magnet Mat, Coll Mat & Environm Engn, Hangzhou 310012, Peoples R China
关键词
FeSiAl; CeO2; Broadband; Microwave absorption performances; Computer simulation technology; COMPOSITES;
D O I
10.1016/j.ceramint.2024.02.253
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Due to the limitations of the Kramers-Kronig relationship, how to achieve ultra-wide effective absorption bandwidth remains a challenge for typical magnetic-dielectric absorbers. In the present work, we have explored the possibility of obtaining ultra-wide absorption bandwidth in FeSiAl composites with help of efficient electromagnetic (EM) simulation software-Computer Simulation Technology (CST). Flaky FeSiAl powders covered by CeO2 have been prepared, in which EM parameters can be tuned by filling ratio of FeSiAl/CeO2 in FeSiAl/CeO2-paraffin composites. The filling ratio has an effect on impedance matching and EM parameters by the arrangement of particles in the paraffin. The composite with 30 wt% flaky FeSiAl/CeO2 achieves an effective absorption bandwidth (EAB) of 6.48 GHz and the optimal microwave absorption efficiency of 1499.3 dB GHz/(wt%& sdot;m) at 1.9 mm. Integrated with a macroscale honeycomb structural design, the FeSiAl/CeO2 composites based metastructure exhibits broadband microwave absorption with an EAB of 14.224 GHz covering from 3.776 GHz to 18 GHz and reflection loss of-65.61 dB at 8.5 GHz. The excellent performances of the designed absorber are ascribed to multiple loss by integrating EM parameters of flaky FeSiAl/CeO2 and the geometry parameters of honeycomb metasrtucture. The present work makes flaky FeSiAl/CeO2 composites possible to achieve broadband microwave absorption.
引用
收藏
页码:17636 / 17645
页数:10
相关论文
empty
未找到相关数据