Percolating coordinated ion transport cells in polymer electrolytes to realize room-temperature solid-state lithium metal batteries

被引:7
|
作者
Liu, Yuxuan [1 ]
Zhang, Dechao [1 ]
Luo, Lingjie [1 ]
Li, Ziyong [1 ]
Lin, Han [1 ]
Liu, Jun [1 ]
Zhao, Yujun [1 ,2 ]
Hu, Renzong [1 ]
Zhu, Min [1 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Dept Phys, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer electrolyte; Solid-state batteries; Percolating network; IN-SALT ELECTROLYTE; DYNAMICS; CHALLENGES; DESIGN;
D O I
10.1016/j.ensm.2024.103548
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer electrolytes, notable for their good mechanical properties, superior processability, and high electrochemical stability, are promising for high-energy-density lithium metal batteries. However, the ionic conduction of polymer electrolytes is seriously constrained by either the entanglement of polymer chains or binding of anions, particularly at ambient temperatures, making their practical application impossible. Herein, we employ a high-salt-concentration strategy with poly(vinylene carbonate) to construct a percolating network by linking coordinated ion transport cells. The cells, consisting of lithium-ion at the core surrounded by coordinated poly (vinylene carbonate), N,N-dimethylformamide, or incompletely bonded bis(trifluoromethanesulfonyl)imide, ensure an efficient coordination and de-coordination process for ion transport. Thus, a high rate of Li+ transport is realized, achieving an ionic conductivity of 0.82 mS cm(-1) at 30 degrees C. Consequently, the formulated solid-state lithium metal batteries with the poly(vinylene carbonate) electrolyte enable superior stability in cycling under a wide temperature range (0-60 degrees C), high working voltage (4.5 V), and high mass load (>10 mg cm(-2)). This simple strategy for creating an ion-percolating network by linking coordinated ion transport cells not only offers new insights into understanding the mechanism for ion transport in polymer electrolytes but also paves the way for the application of solid-state lithium metal batteries.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Recent progress on solid-state hybrid electrolytes for solid-state lithium batteries
    Liang, Jianneng
    Luo, Jing
    Sun, Qian
    Yang, Xiaofei
    Li, Ruying
    Sun, Xueliang
    ENERGY STORAGE MATERIALS, 2019, 21 : 308 - 334
  • [42] Solid-state electrolytes: a way to increase the power of lithium-ion batteries
    Voropaeva, Daria Yu.
    Stenina, Irina A.
    Yaroslavtsev, Andrey B.
    RUSSIAN CHEMICAL REVIEWS, 2024, 93 (06)
  • [43] Ionic Liquid and Polymer Coated Garnet Solid Electrolytes for High-Energy Solid-State Lithium Metal Batteries
    Liu, Zhen
    Borodin, Andriy
    Endres, Frank
    ENERGY TECHNOLOGY, 2022, 10 (02)
  • [44] Development of metal-organic framework materials as solid-state polymer electrolytes for lithium-metal batteries: A review
    Kexin, Wang
    Zhang, Xu
    Hao, Zhongkai
    FUNCTIONAL MATERIALS LETTERS, 2023, 16 (03N04)
  • [45] Single-Ion Conductive Polymer-Based Composite Electrolytes for High-Performance Solid-State Lithium Metal Batteries
    Wen, Kaihua
    Guan, Shundong
    Liu, Sijie
    Yuan, Haocheng
    Liang, Ying
    Yu, Dengfeng
    Zhang, Zheng
    Li, Liangliang
    Nan, Ce-Wen
    SMALL, 2024, 20 (06)
  • [46] Recent progress on flexible lithium metal batteries: Composite lithium metal anodes and solid-state electrolytes
    Wang, Shijian
    Xiong, Pan
    Zhang, Jinqiang
    Wang, Guoxiu
    ENERGY STORAGE MATERIALS, 2020, 29 : 310 - 331
  • [47] Nd3+ doped BaSnF4 solid electrolyte for advanced room-temperature solid-state fluoride ion batteries
    Liu, Lei
    Yang, Li
    Shao, Dingsheng
    Luo, Kaili
    Zou, Changfei
    Luo, Zhigao
    Wang, Xianyou
    CERAMICS INTERNATIONAL, 2020, 46 (12) : 20521 - 20528
  • [48] Modulating the Li-Ion Transport Pathway of Succinonitrile-Based Plastic Crystalline Electrolytes for Solid-State Lithium Metal Batteries
    Ye, Xue
    Fu, Han
    Zhang, Yixiao
    Wu, Dazhuan
    Zhong, Yu
    Wang, Xiuli
    Ouyang, Xiaoping
    Tu, Jiangping
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (02)
  • [49] Polymer-in-salt solid electrolytes for lithium-ion batteries
    Yi, Chengjun
    Liu, Wenyi
    Li, Linpo
    Dong, Haoyang
    Liu, Jinping
    FUNCTIONAL MATERIALS LETTERS, 2019, 12 (06)
  • [50] Metal-organic framework-based solid-state electrolytes for all solid-state lithium metal batteries: a review
    Wei, Tao
    Wang, Zhimeng
    Zhang, Qi
    Zhou, Yanyan
    Sun, Cheng
    Wang, Mengting
    Liu, Ye
    Wang, Sijia
    Yu, Zidong
    Qiu, Xiangyun
    Xu, Shoudong
    Qin, Sai
    CRYSTENGCOMM, 2022, 24 (28) : 5014 - 5030