Percolating coordinated ion transport cells in polymer electrolytes to realize room-temperature solid-state lithium metal batteries

被引:7
|
作者
Liu, Yuxuan [1 ]
Zhang, Dechao [1 ]
Luo, Lingjie [1 ]
Li, Ziyong [1 ]
Lin, Han [1 ]
Liu, Jun [1 ]
Zhao, Yujun [1 ,2 ]
Hu, Renzong [1 ]
Zhu, Min [1 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Dept Phys, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer electrolyte; Solid-state batteries; Percolating network; IN-SALT ELECTROLYTE; DYNAMICS; CHALLENGES; DESIGN;
D O I
10.1016/j.ensm.2024.103548
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer electrolytes, notable for their good mechanical properties, superior processability, and high electrochemical stability, are promising for high-energy-density lithium metal batteries. However, the ionic conduction of polymer electrolytes is seriously constrained by either the entanglement of polymer chains or binding of anions, particularly at ambient temperatures, making their practical application impossible. Herein, we employ a high-salt-concentration strategy with poly(vinylene carbonate) to construct a percolating network by linking coordinated ion transport cells. The cells, consisting of lithium-ion at the core surrounded by coordinated poly (vinylene carbonate), N,N-dimethylformamide, or incompletely bonded bis(trifluoromethanesulfonyl)imide, ensure an efficient coordination and de-coordination process for ion transport. Thus, a high rate of Li+ transport is realized, achieving an ionic conductivity of 0.82 mS cm(-1) at 30 degrees C. Consequently, the formulated solid-state lithium metal batteries with the poly(vinylene carbonate) electrolyte enable superior stability in cycling under a wide temperature range (0-60 degrees C), high working voltage (4.5 V), and high mass load (>10 mg cm(-2)). This simple strategy for creating an ion-percolating network by linking coordinated ion transport cells not only offers new insights into understanding the mechanism for ion transport in polymer electrolytes but also paves the way for the application of solid-state lithium metal batteries.
引用
收藏
页数:13
相关论文
共 50 条
  • [41] Recent progress on metal-organic framework/polymer composite electrolytes for solid-state lithium metal batteries: ion transport regulation and interface engineering
    Li, Bei
    Wang, Changhong
    Yu, Ruizhi
    Han, Jingquan
    Jiang, Shaohua
    Zhang, Chunmei
    He, Shuijian
    ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (05) : 1854 - 1884
  • [42] Introducing Interlayer Electrolytes: Toward Room-Temperature High-Potential Solid-State Rechargeable Fluoride Ion Batteries
    Mohammad, Irshad
    Witter, Raiker
    Fichtner, Maximilian
    Reddy, M. Anji
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (02) : 1553 - 1562
  • [43] Progress in the development of solid-state electrolytes for reversible room-temperature sodium-sulfur batteries
    Vineeth, S. K.
    Tebyetekerwa, Mike
    Liu, Hanwen
    Soni, Chhail Bihari
    Sungjemmenla
    Zhao, X. S.
    Kumar, Vipin
    MATERIALS ADVANCES, 2022, 3 (16): : 6415 - 6440
  • [44] Sustainable Interfaces between Si Anodes and Garnet Electrolytes for Room-Temperature Solid-State Batteries
    Chen, Cheng
    Li, Quan
    Li, Yiqiu
    Cui, Zhonghui
    Guo, Xiangxin
    Li, Hong
    ACS APPLIED MATERIALS & INTERFACES, 2018, 10 (02) : 2185 - 2190
  • [45] Composite Polymer Electrolyte for Highly Cyclable Room-Temperature Solid-State Magnesium Batteries
    Deivanayagam, Ramasubramonian
    Cheng, Meng
    Wang, Mingchao
    Vasudevan, Vallabh
    Foroozan, Tara
    Medhekar, Nikhil V.
    Shahbazian-Yassar, Reza
    ACS APPLIED ENERGY MATERIALS, 2019, 2 (11) : 7980 - 7990
  • [46] Enabling room temperature solid-state lithium batteries by blends of copolymers and ionic liquid electrolytes
    Del Olmo, Rafael
    Harwood, James
    Zanata, Daniela de Morais
    Santino, Federica
    Olmedo-Martinez, Jorge L.
    Howlett, Patrick
    Villaluenga, Irune
    JOURNAL OF POWER SOURCES, 2024, 621
  • [47] Crosslinked polymer-in-salt solid electrolyte with multiple ion transport paths for solid-state lithium metal batteries
    Yang, Jun
    Li, Rongrong
    Zhang, Panpan
    Zhang, Jingmin
    Meng, Jia
    Li, Longwei
    Li, Zheng
    Pu, Xiong
    ENERGY STORAGE MATERIALS, 2024, 64
  • [48] In-Situ Construction of Ceramic-Polymer All-Solid-State Electrolytes for High-Performance Room-Temperature Lithium Metal Batteries
    Zhang, Lei
    Gao, Haiqi
    Xiao, Shijun
    Li, Jinyu
    Ma, Tianli
    Wang, Qian
    Liu, Wen
    Wang, Shi
    ACS MATERIALS LETTERS, 2022, 4 (07): : 1297 - 1305
  • [49] Solid-state polymer electrolytes with in-built fast interfacial transport for secondary lithium batteries
    Zhao, Qing
    Liu, Xiaotun
    Stalin, Sanjuna
    Khan, Kasim
    Archer, Lynden A.
    NATURE ENERGY, 2019, 4 (05) : 365 - 373
  • [50] Insights into tailoring composite solid polymer electrolytes for solid-state lithium batteries
    Nguyen, An-Giang
    Park, Chan-Jin
    JOURNAL OF MEMBRANE SCIENCE, 2023, 675