Percolating coordinated ion transport cells in polymer electrolytes to realize room-temperature solid-state lithium metal batteries

被引:7
|
作者
Liu, Yuxuan [1 ]
Zhang, Dechao [1 ]
Luo, Lingjie [1 ]
Li, Ziyong [1 ]
Lin, Han [1 ]
Liu, Jun [1 ]
Zhao, Yujun [1 ,2 ]
Hu, Renzong [1 ]
Zhu, Min [1 ]
机构
[1] South China Univ Technol, Sch Mat Sci & Engn, Guangdong Prov Key Lab Adv Energy Storage Mat, Guangzhou 510640, Peoples R China
[2] South China Univ Technol, Dept Phys, Guangzhou 510640, Peoples R China
基金
中国国家自然科学基金;
关键词
Polymer electrolyte; Solid-state batteries; Percolating network; IN-SALT ELECTROLYTE; DYNAMICS; CHALLENGES; DESIGN;
D O I
10.1016/j.ensm.2024.103548
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Polymer electrolytes, notable for their good mechanical properties, superior processability, and high electrochemical stability, are promising for high-energy-density lithium metal batteries. However, the ionic conduction of polymer electrolytes is seriously constrained by either the entanglement of polymer chains or binding of anions, particularly at ambient temperatures, making their practical application impossible. Herein, we employ a high-salt-concentration strategy with poly(vinylene carbonate) to construct a percolating network by linking coordinated ion transport cells. The cells, consisting of lithium-ion at the core surrounded by coordinated poly (vinylene carbonate), N,N-dimethylformamide, or incompletely bonded bis(trifluoromethanesulfonyl)imide, ensure an efficient coordination and de-coordination process for ion transport. Thus, a high rate of Li+ transport is realized, achieving an ionic conductivity of 0.82 mS cm(-1) at 30 degrees C. Consequently, the formulated solid-state lithium metal batteries with the poly(vinylene carbonate) electrolyte enable superior stability in cycling under a wide temperature range (0-60 degrees C), high working voltage (4.5 V), and high mass load (>10 mg cm(-2)). This simple strategy for creating an ion-percolating network by linking coordinated ion transport cells not only offers new insights into understanding the mechanism for ion transport in polymer electrolytes but also paves the way for the application of solid-state lithium metal batteries.
引用
收藏
页数:13
相关论文
共 50 条
  • [31] Interfacial modification enabled room temperature solid-state lithium–metal batteries
    Bin Zhao
    Xurui Feng
    Mingpeng Yu
    Wenqi Wang
    Shuchang Hao
    Hao Chen
    Yu Huang
    Wei Gong
    Lihua Liu
    Hong Qiu
    Ionics, 2021, 27 : 1569 - 1578
  • [32] A thin composite polymer electrolyte with high room-temperature conductivity enables mass production for solid-state lithium-metal batteries
    Yuan, Boheng
    Zhao, Bin
    Wang, Qi
    Bai, Yuge
    Cheng, Zhiwei
    Cong, Zhi
    Lu, Yafei
    Ji, Fangdi
    Shen, Fei
    Wang, Peng-Fei
    Han, Xiaogang
    ENERGY STORAGE MATERIALS, 2022, 47 : 288 - 296
  • [33] Recent progress in polymer garnet composite electrolytes for solid-state lithium metal batteries
    Rajamani, Arunkumar
    Panneerselvam, Thamayanthi
    Abraham, Sona Elsin
    Murugan, Ramaswamy
    Sivaprakasam, Sivaraman
    SUSTAINABLE ENERGY & FUELS, 2023, 7 (14): : 3185 - 3212
  • [34] A thin composite polymer electrolyte with high room-temperature conductivity enables mass production for solid-state lithium-metal batteries
    Yuan, Boheng
    Zhao, Bin
    Wang, Qi
    Bai, Yuge
    Cheng, Zhiwei
    Cong, Zhi
    Lu, Yafei
    Ji, Fangdi
    Shen, Fei
    Wang, Peng-Fei
    Han, Xiaogang
    Energy Storage Materials, 2022, 47 : 288 - 296
  • [35] Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries
    Jung, Yun-Chae
    Park, Myung-Soo
    Kim, Duck-Hyun
    Ue, Makoto
    Eftekhari, Ali
    Kim, Dong-Won
    SCIENTIFIC REPORTS, 2017, 7
  • [36] Construction of conductive and flexible composite cathodes for room-temperature solid-state lithium batteries
    Cui, Zhonghui (cuizhonghui@mail.sic.ac.cn), 1600, Elsevier Ltd (762):
  • [37] In Situ Polymerization Inhibiting Electron Localization in Hybrid Electrolyte for Room-Temperature Solid-State Lithium Metal Batteries
    Shen, Chunli
    Feng, Wencong
    Yu, Yongkun
    Wang, Hanxiao
    Cheng, Yu
    Dong, Chenxu
    Gu, Jiapei
    Zheng, Aqian
    Liao, Xiaobin
    Xu, Xu
    Mai, Liqiang
    ADVANCED ENERGY MATERIALS, 2024, 14 (20)
  • [38] Construction of conductive and flexible composite cathodes for room-temperature solid-state lithium batteries
    He, Minghui
    Cui, Zhonghui
    Han, Feng
    Guo, Xiangxin
    JOURNAL OF ALLOYS AND COMPOUNDS, 2018, 762 : 157 - 162
  • [39] Steric Hindrance Manipulation in Polymer Electrolytes toward Wide-Temperature Solid-State Lithium Metal Batteries
    Huang, Jie
    Qiu, Bin
    Xu, Feng
    Gao, Jinyu
    Zhang, Peixin
    He, Chuanxin
    Mi, Hongwei
    ACS ENERGY LETTERS, 2025,
  • [40] Room-Temperature Performance of Poly(Ethylene Ether Carbonate)-Based Solid Polymer Electrolytes for All-Solid-State Lithium Batteries
    Yun-Chae Jung
    Myung-Soo Park
    Duck-Hyun Kim
    Makoto Ue
    Ali Eftekhari
    Dong-Won Kim
    Scientific Reports, 7