A generalized model for a triboelectric nanogenerator energy harvesting system

被引:14
作者
Sun, Bobo [1 ,2 ]
Guo, Xin [2 ,3 ]
Zhang, Yuyang [4 ,5 ]
Wang, Zhong Lin [2 ,3 ]
Shao, Jiajia [2 ,3 ]
机构
[1] Guangxi Univ, Sch Phys Sci & Technol, Nanning 530004, Peoples R China
[2] Chinese Acad Sci, Beijing Inst Nanoenergy & Nanosyst, Beijing 101400, Peoples R China
[3] Univ Chinese Acad Sci, Sch Nanosci & Technol, Beijing 100049, Peoples R China
[4] Univ Manchester, Dept Mat, Manchester M13 9PL, England
[5] Jilin Univ, Sch Mat Sci & Engn, Changchun 130012, Peoples R China
基金
中国国家自然科学基金;
关键词
TENG; Energy harvesting system; Generalized model; Dynamic contact problem; VIBRATION;
D O I
10.1016/j.nanoen.2024.109637
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A triboelectric nanogenerator (TENG) energy harvesting system involves at least three components: the mechanical source that inputs mechanical energy to drive TENGs, the TENG device itself as an energy converter, and an external electrical circuit that output the energy from TENGs. Multiple theoretical models have been developed for structural optimization design and maximum power output, yet there has been less emphasis on dynamic modelling of the entire energy harvesting system. This work presents attempts to establish such systemlevel models that encompass both mechanical and electrical systems. Special consideration is paid to the dynamic contact problem in this generalized model, since dynamic response of impacts can significantly affect the electric outputs. To address contact constraint problems, the penalty function method is utilized to handle nonsmoothness and discontinuity. Subsequently, this research specifies how to improve the maximum energy conversion efficiency, and suggest optimal executive strategies for maximizing the energy output through a thorough parametric study. The anticipated outcome is that the generalized model will not only guide optimization design and predict the dynamic characteristics of the energy harvesting system but also assess the potential feasibility of mechanical energy harvesting technology across diverse application domains.
引用
收藏
页数:11
相关论文
共 33 条
[1]   Modeling and optimization of an inertial triboelectric motion sensor [J].
Adly, Mohammed A. ;
Arafa, Mustafa H. ;
Hegazi, Hesham A. .
NANO ENERGY, 2021, 85
[2]   Triboelectric nanogenerators [J].
Cheng, Tinghai ;
Shao, Jiajia ;
Wang, Zhong Lin .
NATURE REVIEWS METHODS PRIMERS, 2023, 3 (01)
[3]   Towards optimized triboelectric nanogenerators [J].
Dharmasena, R. D. I. G. ;
Silva, S. R. P. .
NANO ENERGY, 2019, 62 :530-549
[4]   A unified theoretical model for Triboelectric Nanogenerators [J].
Dharmasena, R. D. I. G. ;
Jayawardena, K. D. G. I. ;
Mills, C. A. ;
Dorey, R. A. ;
Silva, S. R. P. .
NANO ENERGY, 2018, 48 :391-400
[5]   Triboelectric nanogenerators: providing a fundamental framework [J].
Dharmasena, R. D. I. G. ;
Jayawardena, K. D. G. I. ;
Mills, C. A. ;
Deane, J. H. B. ;
Anguita, J. V. ;
Dorey, R. A. ;
Silva, S. R. P. .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (08) :1801-1811
[6]   Nature of Power Generation and Output Optimization Criteria for Triboelectric Nanogenerators [J].
Dharmasena, R. D. Ishara G. ;
Deane, Jonathan H. B. ;
Silva, S. Ravi P. .
ADVANCED ENERGY MATERIALS, 2018, 8 (31)
[7]   Imposing Dirichlet boundary conditions with Nitsche's method and spline-based finite elements [J].
Embar, Anand ;
Dolbow, John ;
Harari, Isaac .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 2010, 83 (07) :877-898
[8]   Field-circuit coupling model of triboelectric nanogenerators [J].
Fan, Chunmei ;
Shao, Jiajia ;
Guo, Xin ;
Willatzen, Morten ;
Wang, Zhong Lin .
MATERIALS TODAY PHYSICS, 2023, 35
[9]  
Fletcher R., 1983, Mathematical Programming The State of the Art, P87, DOI DOI 10.1007/978-3-642-68874-45
[10]   Three-dimensional mathematical modelling and dynamic analysis of freestanding triboelectric nanogenerators [J].
Guo, Xin ;
Shao, Jiajia ;
Willatzen, Morten ;
Yang, Yi ;
Wang, Zhong Lin .
JOURNAL OF PHYSICS D-APPLIED PHYSICS, 2022, 55 (34)