Computerized decision support is an effective approach to select memory clinic patients for amyloid-PET

被引:1
作者
Rhodius-Meester, Hanneke F. M. [1 ,2 ,3 ,4 ]
van Maurik, Ingrid S. [1 ,2 ,5 ,6 ]
Collij, Lyduine E. [7 ]
van Gils, Aniek M. [1 ,2 ]
Koikkalainen, Juha [8 ]
Tolonen, Antti [8 ]
Pijnenburg, Yolande A. L. [1 ,2 ]
Berkhof, Johannes [5 ,6 ]
Barkhof, Frederik [7 ,9 ,10 ]
van de Giessen, Elsmarieke [1 ,2 ,7 ]
Lotjonen, Jyrki [8 ]
van der Flier, Wiesje M. [1 ,2 ,5 ,6 ]
机构
[1] Vrije Univ Amsterdam, Alzheimer Ctr Amsterdam, Neurol, Amsterdam UMC Locat VUmc, Amsterdam, Netherlands
[2] Amsterdam Neurosci, Neurodegenerat, Amsterdam, Netherlands
[3] Vrije Univ Amsterdam, Dept Internal Med, Geriatr Med Sect, Amsterdam UMC, Amsterdam, Netherlands
[4] Oslo Univ Hosp, Dept Geriatr Med, Memory Clin, Oslo, Norway
[5] Amsterdam UMC Locat Vrije Univ Amsterdam, Epidemiol & Data Sci, Amsterdam, Netherlands
[6] Amsterdam Publ Hlth, Methodol, Amsterdam, Netherlands
[7] Vrije Univ Amsterdam, Dept Radiol & Nucl Med, Amsterdam UMC, Amsterdam, Netherlands
[8] Combinostics Ltd, Tampere, Finland
[9] UCL, Queen Sq Inst Neurol, London, England
[10] UCL, Ctr Med Image Comp, London, England
来源
PLOS ONE | 2024年 / 19卷 / 05期
基金
欧盟地平线“2020”;
关键词
POSITRON-EMISSION-TOMOGRAPHY; ALZHEIMERS-DISEASE; DIFFERENTIAL-DIAGNOSIS; DEMENTIA; CRITERIA; STATE; CARE; ASSOCIATION; VALIDATION; BIOMARKER;
D O I
10.1371/journal.pone.0303111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background The use of amyloid-PET in dementia workup is upcoming. At the same time, amyloid-PET is costly and limitedly available. While the appropriate use criteria (AUC) aim for optimal use of amyloid-PET, their limited sensitivity hinders the translation to clinical practice. Therefore, there is a need for tools that guide selection of patients for whom amyloid-PET has the most clinical utility. We aimed to develop a computerized decision support approach to select patients for amyloid-PET. Methods We included 286 subjects (135 controls, 108 Alzheimer's disease dementia, 33 frontotemporal lobe dementia, and 10 vascular dementia) from the Amsterdam Dementia Cohort, with available neuropsychology, APOE, MRI and [F-18]florbetaben amyloid-PET. In our computerized decision support approach, using supervised machine learning based on the DSI classifier, we first classified the subjects using only neuropsychology, APOE, and quantified MRI. Then, for subjects with uncertain classification (probability of correct class (PCC) < 0.75) we enriched classification by adding (hypothetical) amyloid positive (AD-like) and negative (normal) PET visual read results and assessed whether the diagnosis became more certain in at least one scenario (PPC >= 0.75). If this was the case, the actual visual read result was used in the final classification. We compared the proportion of PET scans and patients diagnosed with sufficient certainty in the computerized approach with three scenarios: 1) without amyloid-PET, 2) amyloid-PET according to the AUC, and 3) amyloid-PET for all patients. Results The computerized approach advised PET in n = 60(21%) patients, leading to a diagnosis with sufficient certainty in n = 188(66%) patients. This approach was more efficient than the other three scenarios: 1) without amyloid-PET, diagnostic classification was obtained in n = 155(54%), 2) applying the AUC resulted in amyloid-PET in n = 113(40%) and diagnostic classification in n = 156(55%), and 3) performing amyloid-PET in all resulted in diagnostic classification in n = 154(54%). Conclusion Our computerized data-driven approach selected 21% of memory clinic patients for amyloid-PET, without compromising diagnostic performance. Our work contributes to a cost-effective implementation and could support clinicians in making a balanced decision in ordering additional amyloid PET during the dementia workup.
引用
收藏
页数:17
相关论文
共 50 条
[41]   Boosting the diagnostic power of amyloid-β PET using a data-driven spatially informed classifier for decision support [J].
Venkataraman, Ashwin V. ;
Bai, Wenjia ;
Whittington, Alex ;
Myers, James F. ;
Rabiner, Eugenii A. ;
Lingford-Hughes, Anne ;
Matthews, Paul M. .
ALZHEIMERS RESEARCH & THERAPY, 2021, 13 (01)
[42]   Defining a Centiloid scale threshold predicting long-term progression to dementia in patients attending the memory clinic: an [18F] flutemetamol amyloid PET study [J].
Hanseeuw, Bernard J. ;
Malotaux, Vincent ;
Dricot, Laurence ;
Quenon, Lisa ;
Sznajer, Yves ;
Cerman, Jiri ;
Woodard, John L. ;
Buckley, Christopher ;
Farrar, Gill ;
Ivanoiu, Adrian ;
Lhommel, Renaud .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (01) :302-310
[43]   Subcortical and Cortical Regions of Amyloid-β Pathology Measured by 11C-PiB PET Are Differentially Associated with Cognitive Functions and Stages of Disease in Memory Clinic Patients [J].
Almkvist, Ove ;
Bruggen, Katharina ;
Nordberg, Agneta .
JOURNAL OF ALZHEIMERS DISEASE, 2021, 81 (04) :1613-1624
[44]   Differentiating Patients at the Memory Clinic With Simple Reaction Time Variables: A Predictive Modeling Approach Using Support Vector Machines and Bayesian Optimization [J].
Wallert, John ;
Westman, Eric ;
Ulinder, Johnny ;
Annerstedt, Mathilde ;
Terzis, Beata ;
Ekman, Urban .
FRONTIERS IN AGING NEUROSCIENCE, 2018, 10
[45]   How healthy participants value additional diagnostic testing with amyloid-PET in patients diagnosed with mild cognitive impairment — a bidding game experiment [J].
I. S. van Maurik ;
E. D. Bakker ;
A. A. J. M. van Unnik ;
H. M. Broulikova ;
M. D. Zwan ;
E. van de Giessen ;
J. Berkhof ;
F. H. Bouwman ;
J. E. Bosmans ;
W. M. van der Flier .
Alzheimer's Research & Therapy, 15
[46]   Clinical impact of18F-FDG-PET among memory clinic patients with uncertain diagnosis [J].
Perini, Giulia ;
Rodriguez-Vieitez, Elena ;
Kadir, Ahmadul ;
Sala, Arianna ;
Savitcheva, Irina ;
Nordberg, Agneta .
EUROPEAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING, 2021, 48 (02) :612-622
[47]   How healthy participants value additional diagnostic testing with amyloid-PET in patients diagnosed with mild cognitive impairment - a bidding game experiment [J].
van Maurik, I. S. ;
Bakker, E. D. ;
van Unnik, A. A. J. M. ;
Broulikova, H. M. ;
Zwan, M. D. ;
van de Giessen, E. ;
Berkhof, J. ;
Bouwman, F. H. ;
Bosmans, J. E. ;
van der Flier, W. M. .
ALZHEIMERS RESEARCH & THERAPY, 2023, 15 (01)
[48]   A decision support system to select suppliers for a sustainable supply chain based on a systematic DEA approach [J].
Shi, Ping ;
Yan, Bo ;
Shi, Song ;
Ke, Chenxu .
INFORMATION TECHNOLOGY & MANAGEMENT, 2015, 16 (01) :39-49
[49]   Cortical Superficial Siderosis in Memory Clinic Patients: Further Evidence for Underlying Cerebral Amyloid Angiopathy [J].
Charidimou, Andreas ;
Ni, Jun ;
Martinez-Ramirez, Sergi ;
Vashkevich, Anastasia ;
Ayres, Alison ;
Rosand, Jonathan ;
Gurol, Edip M. ;
Greenberg, Steven M. ;
Viswanathan, Anand .
CEREBROVASCULAR DISEASES, 2016, 41 (3-4) :156-162
[50]   Amyloid pathology and vascular risk are associated with distinct patterns of cerebral white matter hyperintensities: A multicenter study in 3132 memory clinic patients [J].
Biesbroek, J. Matthijs ;
Coenen, Mirthe ;
DeCarli, Charles ;
Fletcher, Evan M. ;
Maillard, Pauline M. ;
Barkhof, Frederik ;
Barnes, Josephine ;
Benke, Thomas ;
Chen, Christopher P. L. H. ;
Dal-Bianco, Peter ;
Dewenter, Anna ;
Duering, Marco ;
Enzinger, Christian ;
Ewers, Michael ;
Exalto, Lieza G. ;
Franzmeier, Nicolai ;
Hilal, Saima ;
Hofer, Edith ;
Koek, Huiberdina L. ;
Maier, Andrea B. ;
McCreary, Cheryl R. ;
Papma, Janne M. ;
Paterson, Ross W. ;
Pijnenburg, Yolande A. L. ;
Rubinski, Anna ;
Schmidt, Reinhold ;
Schott, Jonathan M. ;
Slattery, Catherine F. ;
Smith, Eric E. ;
Sudre, Carole H. ;
Steketee, Rebecca M. E. ;
Teunissen, Charlotte E. ;
van den Berg, Esther ;
van der Flier, Wiesje M. ;
Venketasubramanian, Narayanaswamy ;
Venkatraghavan, Vikram ;
Vernooij, Meike W. ;
Wolters, Frank J. ;
Xin, Xu ;
Kuijf, Hugo J. ;
Biessels, Geert Jan .
ALZHEIMERS & DEMENTIA, 2024, 20 (04) :2980-2989