Computerized decision support is an effective approach to select memory clinic patients for amyloid-PET

被引:0
|
作者
Rhodius-Meester, Hanneke F. M. [1 ,2 ,3 ,4 ]
van Maurik, Ingrid S. [1 ,2 ,5 ,6 ]
Collij, Lyduine E. [7 ]
van Gils, Aniek M. [1 ,2 ]
Koikkalainen, Juha [8 ]
Tolonen, Antti [8 ]
Pijnenburg, Yolande A. L. [1 ,2 ]
Berkhof, Johannes [5 ,6 ]
Barkhof, Frederik [7 ,9 ,10 ]
van de Giessen, Elsmarieke [1 ,2 ,7 ]
Lotjonen, Jyrki [8 ]
van der Flier, Wiesje M. [1 ,2 ,5 ,6 ]
机构
[1] Vrije Univ Amsterdam, Alzheimer Ctr Amsterdam, Neurol, Amsterdam UMC Locat VUmc, Amsterdam, Netherlands
[2] Amsterdam Neurosci, Neurodegenerat, Amsterdam, Netherlands
[3] Vrije Univ Amsterdam, Dept Internal Med, Geriatr Med Sect, Amsterdam UMC, Amsterdam, Netherlands
[4] Oslo Univ Hosp, Dept Geriatr Med, Memory Clin, Oslo, Norway
[5] Amsterdam UMC Locat Vrije Univ Amsterdam, Epidemiol & Data Sci, Amsterdam, Netherlands
[6] Amsterdam Publ Hlth, Methodol, Amsterdam, Netherlands
[7] Vrije Univ Amsterdam, Dept Radiol & Nucl Med, Amsterdam UMC, Amsterdam, Netherlands
[8] Combinostics Ltd, Tampere, Finland
[9] UCL, Queen Sq Inst Neurol, London, England
[10] UCL, Ctr Med Image Comp, London, England
来源
PLOS ONE | 2024年 / 19卷 / 05期
基金
欧盟地平线“2020”;
关键词
POSITRON-EMISSION-TOMOGRAPHY; ALZHEIMERS-DISEASE; DIFFERENTIAL-DIAGNOSIS; DEMENTIA; CRITERIA; STATE; CARE; ASSOCIATION; VALIDATION; BIOMARKER;
D O I
10.1371/journal.pone.0303111
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Background The use of amyloid-PET in dementia workup is upcoming. At the same time, amyloid-PET is costly and limitedly available. While the appropriate use criteria (AUC) aim for optimal use of amyloid-PET, their limited sensitivity hinders the translation to clinical practice. Therefore, there is a need for tools that guide selection of patients for whom amyloid-PET has the most clinical utility. We aimed to develop a computerized decision support approach to select patients for amyloid-PET. Methods We included 286 subjects (135 controls, 108 Alzheimer's disease dementia, 33 frontotemporal lobe dementia, and 10 vascular dementia) from the Amsterdam Dementia Cohort, with available neuropsychology, APOE, MRI and [F-18]florbetaben amyloid-PET. In our computerized decision support approach, using supervised machine learning based on the DSI classifier, we first classified the subjects using only neuropsychology, APOE, and quantified MRI. Then, for subjects with uncertain classification (probability of correct class (PCC) < 0.75) we enriched classification by adding (hypothetical) amyloid positive (AD-like) and negative (normal) PET visual read results and assessed whether the diagnosis became more certain in at least one scenario (PPC >= 0.75). If this was the case, the actual visual read result was used in the final classification. We compared the proportion of PET scans and patients diagnosed with sufficient certainty in the computerized approach with three scenarios: 1) without amyloid-PET, 2) amyloid-PET according to the AUC, and 3) amyloid-PET for all patients. Results The computerized approach advised PET in n = 60(21%) patients, leading to a diagnosis with sufficient certainty in n = 188(66%) patients. This approach was more efficient than the other three scenarios: 1) without amyloid-PET, diagnostic classification was obtained in n = 155(54%), 2) applying the AUC resulted in amyloid-PET in n = 113(40%) and diagnostic classification in n = 156(55%), and 3) performing amyloid-PET in all resulted in diagnostic classification in n = 154(54%). Conclusion Our computerized data-driven approach selected 21% of memory clinic patients for amyloid-PET, without compromising diagnostic performance. Our work contributes to a cost-effective implementation and could support clinicians in making a balanced decision in ordering additional amyloid PET during the dementia workup.
引用
收藏
页数:17
相关论文
共 50 条
  • [1] Comparison between amyloid-PET and CSF amyloid-β biomarkers in a clinical cohort with memory deficits
    Bouter, Caroline
    Vogelgsang, Jonathan
    Wiltfang, Jens
    CLINICA CHIMICA ACTA, 2019, 492 : 62 - 68
  • [2] Selection of memory clinic patients for CSF biomarker assessment can be restricted to a quarter of cases by using computerized decision support, without compromising diagnostic accuracy
    Rhodius-Meester, Hanneke F. M.
    van Maurik, Ingrid S.
    Koikkalainen, Juha
    Tolonen, Antti
    Frederiksen, Kristian S.
    Hasselbalch, Steen G.
    Soininen, Hilkka
    Herukka, Sanna-Kaisa
    Remes, Anne M.
    Teunissen, Charlotte E.
    Barkhof, Frederik
    Pijnenburg, Yolande A. L.
    Scheltens, Philip
    Lotjonen, Jyrki
    van der Flier, Wiesje M.
    PLOS ONE, 2020, 15 (01):
  • [3] Comparative analysis of Elecsys and ELISA for differentiating amyloid-PET status in a Korean memory clinic based on cerebrospinal fluid biomarkers
    Park, Sun Ah
    An, Young-Sil
    Park, Yong-Jin
    Lee, Ji-Yeong
    Jeon, Hyuna
    Kim, Yoon Seob
    Lee, Keun
    Sun, Kyunghwa
    Lee, Sun Min
    Moon, So Young
    JOURNAL OF ALZHEIMERS DISEASE, 2025, 104 (01) : 232 - 244
  • [4] Identifying an Optimal Cutoff of the Montreal Cognitive Assessment to Predict Amyloid-PET Positivity in a Referral Memory Clinic
    Nair, Anil K.
    Ramaswamy, Srinath
    Kan, Krystal
    Nair, Shreya
    ALZHEIMER DISEASE & ASSOCIATED DISORDERS, 2019, 33 (03) : 194 - 199
  • [5] Blood β-synuclein is related to amyloid PET positivity in memory clinic patients
    Oeckl, Patrick
    Bluma, Marina
    Bucci, Marco
    Halbgebauer, Steffen
    Chiotis, Konstantinos
    Sandebring-Matton, Anna
    Ashton, Nicholas J.
    Di Molfetta, Guglielmo
    Grotschel, Lana
    Kivipelto, Miia
    Blennow, Kaj
    Zetterberg, Henrik
    Savitcheva, Irina
    Nordberg, Agneta
    Otto, Markus
    ALZHEIMERS & DEMENTIA, 2023, 19 (11) : 4896 - 4907
  • [6] Clinical outcomes up to 9 years after [18F]flutemetamol amyloid-PET in a symptomatic memory clinic population
    Collij, Lyduine E.
    Farrar, Gill
    Zwan, Marissa
    van de Giessen, Elsmarieke
    Ossenkoppele, Rik
    Barkhof, Frederik
    Rozemuller, Annemieke J. M.
    Pijnenburg, Yolande A. L.
    van der Flier, Wiesje M.
    Bouwman, Femke
    ALZHEIMERS RESEARCH & THERAPY, 2023, 15 (01)
  • [7] Evaluating cognitive profiles of patients undergoing clinical amyloid-PET imaging
    Loreto, Flavia
    Gunning, Stephen
    Golemme, Mara
    Watt, Hilary
    Patel, Neva
    Win, Zarni
    Carswell, Christopher
    Perry, Richard J.
    Malhotra, Paresh A.
    BRAIN COMMUNICATIONS, 2021, 3 (02)
  • [8] Quantification of [18F]florbetaben amyloid-PET imaging in a mixed memory clinic population: The ABIDE project
    Collij, Lyduine E.
    Salvado, Gemma
    de Wilde, Arno
    Altomare, Daniele
    Shekari, Mahnaz
    Gispert, Juan Domingo
    Bullich, Santiago
    Stephens, Andrew
    Barkhof, Frederik
    Scheltens, Philip
    Bouwman, Femke
    van der Flier, Wiesje M.
    ALZHEIMERS & DEMENTIA, 2022, : 2397 - 2407
  • [9] Amyloid PET ordering practices in a memory disorders clinic
    Turk, Katherine W.
    Vives-Rodriguez, Ana
    Schiloski, Kylie A.
    Marin, Anna
    Wang, Ryan
    Singh, Prabhjyot
    Hajos, Gabor P.
    Powsner, Rachel
    DeCaro, Renee
    Budson, Andrew E.
    ALZHEIMERS & DEMENTIA-TRANSLATIONAL RESEARCH & CLINICAL INTERVENTIONS, 2022, 8 (01)
  • [10] Predicting amyloid-PET status in a memory clinic: The role of the novel antero-posterior index and visual rating scales
    Zilioli, Alessandro
    Misirocchi, Francesco
    Pancaldi, Beatrice
    Mutti, Carlotta
    Ganazzoli, Chiara
    Morelli, Nicola
    Pellegrini, Francesca Ferrari
    Messa, Giovanni
    Scarlattei, Maura
    Mohanty, Rosaleena
    Ruffini, Livia
    Westman, Eric
    Spallazzi, Marco
    JOURNAL OF THE NEUROLOGICAL SCIENCES, 2023, 455