Identification and risk classification of thymic epithelial tumors using 3D computed tomography images and deep learning models

被引:3
作者
Moon, Ye Sung [1 ]
Park, Byunggeon [2 ]
Park, Jongmin [2 ]
Ho, Thao Thi [1 ]
Lim, Jae-Kwang [2 ,3 ]
Choi, Sanghun [1 ]
机构
[1] Kyungpook Natl Univ, Sch Mech Engn, 80 Daehak Ro, Daegu 41566, South Korea
[2] Kyungpook Natl Univ Hosp, Dept Radiol, Sch Med, Daegu, South Korea
[3] Kyungpook Natl Univ, Sch Med, 680 Gukchaebosang Ro, Daegu 41944, South Korea
关键词
Machine learning; Transfer learning; Bayesian Optimization; Convolutional neural network; Artificial intelligence; MASAOKA-KOGA STAGE; THYMOMA;
D O I
10.1016/j.bspc.2024.106473
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
Thymic epithelial tumor (TET) is the most common neoplasm of the anterior mediastinum, accounting for approximately 47 % of all anterior mediastinal tumors. Early identification and risk stratification of patients with TET are beneficial for efficient intervention, but identifying subjects at high risk is challenging and timeconsuming. This study proposes a deep-learning (DL) framework that combines the automatic segmentation of lung lesions with the classification of high-risk cases of TET. The model was trained, validated, and tested using computed tomography images of 125 patients with TET. Our method comprises two steps: 1) automatic segmentation of TET and comparison of the performance of 3D U-Net, 3D Res U-Net, 3D Dense U-Net, 3D Wide UNet, and 3D U-Net++ models; 2) identification of high-risk TET cases using pretrained DL models (3D ResNet50, 3D SE ResNext50, 3D DenseNet121, and 3D VGG19) with transfer learning. The hyperparameters for segmentation and classification were determined using Bayesian optimization. Among the abovementioned 3D U-Netbased methods, 3D U-Net++ showed the best segmentation performance on the test set. Among the four classification models, ResNet50 performed the best on the test set. We also used a gradient-weighted class activation map to visualize the classification of risk groups in convolutional neural networks (CNNs), emphasizing sensitive features in the learning process. This study is the first to integrate automated segmentation of TETs with the identification of high-risk cases. The results demonstrate that CNN DL techniques can be used for the diagnosis and classification of risk groups in patients with TET.
引用
收藏
页数:15
相关论文
共 43 条
[1]   The Lung Image Database Consortium, (LIDC) and Image Database Resource Initiative (IDRI): A Completed Reference Database of Lung Nodules on CT Scans [J].
Armato, Samuel G., III ;
McLennan, Geoffrey ;
Bidaut, Luc ;
McNitt-Gray, Michael F. ;
Meyer, Charles R. ;
Reeves, Anthony P. ;
Zhao, Binsheng ;
Aberle, Denise R. ;
Henschke, Claudia I. ;
Hoffman, Eric A. ;
Kazerooni, Ella A. ;
MacMahon, Heber ;
van Beek, Edwin J. R. ;
Yankelevitz, David ;
Biancardi, Alberto M. ;
Bland, Peyton H. ;
Brown, Matthew S. ;
Engelmann, Roger M. ;
Laderach, Gary E. ;
Max, Daniel ;
Pais, Richard C. ;
Qing, David P-Y ;
Roberts, Rachael Y. ;
Smith, Amanda R. ;
Starkey, Adam ;
Batra, Poonam ;
Caligiuri, Philip ;
Farooqi, Ali ;
Gladish, Gregory W. ;
Jude, C. Matilda ;
Munden, Reginald F. ;
Petkovska, Iva ;
Quint, Leslie E. ;
Schwartz, Lawrence H. ;
Sundaram, Baskaran ;
Dodd, Lori E. ;
Fenimore, Charles ;
Gur, David ;
Petrick, Nicholas ;
Freymann, John ;
Kirby, Justin ;
Hughes, Brian ;
Casteele, Alessi Vande ;
Gupte, Sangeeta ;
Sallam, Maha ;
Heath, Michael D. ;
Kuhn, Michael H. ;
Dharaiya, Ekta ;
Burns, Richard ;
Fryd, David S. .
MEDICAL PHYSICS, 2011, 38 (02) :915-931
[2]  
Azad M.M., 2021, ANN ROMANIAN SOC CEL, V25, P5591
[3]  
Bergstra J, 2012, J MACH LEARN RES, V13, P281
[4]  
Byrd J, 2019, PR MACH LEARN RES, V97
[5]   Development and validation of a deep learning radiomics nomogram for preoperatively differentiating thymic epithelial tumor histologic subtypes [J].
Chen, Xiangmeng ;
Feng, Bao ;
Xu, Kuncai ;
Chen, Yehang ;
Duan, Xiaobei ;
Jin, Zhifa ;
Li, Kunwei ;
Li, Ronggang ;
Long, Wansheng ;
Liu, Xueguo .
EUROPEAN RADIOLOGY, 2023, 33 (10) :6804-6816
[6]   Masaoka-Koga and TNM Staging System in Thymic Epithelial Tumors: Prognostic Comparison and the Role of the Number of Involved Structures [J].
Chiappetta, Marco ;
Lococo, Filippo ;
Pogliani, Luca ;
Sperduti, Isabella ;
Tabacco, Diomira ;
Bria, Emilio ;
D'Argento, Ettore ;
Massaccesi, Mariangela ;
Boldrini, Luca ;
Meacci, Elisa ;
Porziella, Venanzio ;
Nachira, Dania ;
Congedo, Maria Teresa ;
Margaritora, Stefano .
CANCERS, 2021, 13 (21)
[7]  
Cicek Ozgun, 2016, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2016. 19th International Conference. Proceedings: LNCS 9901, P424, DOI 10.1007/978-3-319-46723-8_49
[8]   The Masaoka-Koga Stage Classification for Thymic Malignancies Clarification and Definition of Terms [J].
Detterbeck, Frank C. ;
Nicholson, Andrew G. ;
Kondo, Kazuya ;
Van Schil, Paul ;
Moran, Cesar .
JOURNAL OF THORACIC ONCOLOGY, 2011, 6 (07) :S1710-S1716
[9]   Epidemiology of Thymoma and Associated Malignancies [J].
Engels, Eric A. .
JOURNAL OF THORACIC ONCOLOGY, 2010, 5 :S260-S265
[10]   Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification [J].
He, Kaiming ;
Zhang, Xiangyu ;
Ren, Shaoqing ;
Sun, Jian .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :1026-1034