Modeling of time-dependent mechanical behavior of oleic acid nanocomposites using nanoindentation

被引:1
|
作者
Kolli, V. [1 ]
Scheider, I. [1 ]
Ovri, H. [2 ]
Giuntini, D. [3 ,5 ]
Cyron, C. [1 ,4 ]
机构
[1] Helmholtz Zentrum Hereon, Inst Mat Syst Modeling, Max Planck Str 1, D-21502 Geesthacht, Schleswig Holst, Germany
[2] Helmholtz Zentrum Hereon, Inst Hydrogen Technol, Max Planck Str 1, D-21502 Geesthacht, Schleswig Holst, Germany
[3] Hamburg Univ Technol, Inst Adv Ceram, Denickestr 15, D-21073 Hamburg, Germany
[4] Hamburg Univ Technol, Inst Continuum & Mat Mech, Eissendorfer Str 42 Geb M, D-21073 Hamburg, Germany
[5] Eindhoven Univ Technol, Dept Mech Engn, De Rondom 70, NL-5612 AP Eindhoven, Netherlands
来源
MATERIALS TODAY COMMUNICATIONS | 2024年 / 39卷
关键词
Nanocomposites; Superlattices; Nanoindentation; Creep; Material modeling; Parameter identification; HIGH-TEMPERATURE NANOINDENTATION; PLASTICITY PARAMETERS; MICRO-INDENTATION; CREEP COMPLIANCE; INVERSE ANALYSIS; IDENTIFICATION; POLYMER; VISCOELASTICITY; SUPERCRYSTALS; DEFORMATION;
D O I
10.1016/j.mtcomm.2024.108892
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Supercrystalline nanocomposites are a burgeoning class of hybrid inorganic-organic materials. Studies showed that self -assembly of iron oxide particles surface-functionalized with organic (e.g. oleic acid) ligands produces a supercrystalline nanocomposite with exceptional mechanical properties. Consequently, significant research has been conducted on these materials to experimentally characterize the mechanical properties of such materials. However, so far all modeling studies used time and rate independent elastoplastic material models. In the light of new experimental results, we propose to extent this view and use time -dependent models to capture viscoelastic behavior. To this end, we quantified this behavior using nanoindentation creep experiments and modeled it using a rheological network model with several parallel Maxwell branches and an additional elastoplastic branch. We demonstrate how the parameters of such a model can be found using inverse analysis. With the calibrated material model, a good agreement of the time dependent behavior between simulation and experimental results is achieved. Thus, a method is provided to model time dependent behavior using complex non -classical experiments like nanoindentation.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] Analysis and modeling for time-dependent behavior of polymers exhibited in nanoindentation tests
    Wei, Pal Jen
    Shen, Wei Xin
    Lin, Jen Fin
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2008, 354 (33) : 3911 - 3918
  • [2] Time-dependent mechanical behavior of phase-separated ZrCuTiTa thin films under nanoindentation
    Chou, H. S.
    Du, X. H.
    Huang, J. C.
    Nieh, T. G.
    INTERMETALLICS, 2012, 27 : 26 - 30
  • [3] Understanding the Time-Dependent Mechanical Behavior of Bimodal Nanoporous Si-Mg Films via Nanoindentation
    Maxwell, Tyler L.
    Balk, Thomas John
    GLOBAL CHALLENGES, 2019, 3 (07)
  • [4] Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils *
    Yang, Fan
    Das, Debashish
    Karunakaran, Kathiresan
    Genin, Guy M.
    Thomopoulos, Stavros
    Chasiotis, Ioannis
    ACTA BIOMATERIALIA, 2023, 163 : 63 - 77
  • [5] Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils
    Yang, Fan
    Das, Debashish
    Karunakaran, Kathiresan
    Genin, Guy M.
    Thomopoulos, Stavros
    Chasiotis, Ioannis
    ACTA BIOMATERIALIA, 2023, 163 : 63 - 77
  • [6] Nonlinear time-dependent mechanical behavior of mammalian collagen fibrils
    Yang F.
    Das D.
    Karunakaran K.
    Genin G.M.
    Thomopoulos S.
    Chasiotis I.
    Acta Biomaterialia, 2023, 163 : 63 - 77
  • [7] The characterization of creep and time-dependent properties of bulk metallic glasses using nanoindentation
    Li, W. H.
    Shin, Keesam
    Lee, C. G.
    Wei, B. C.
    Zhang, T. H.
    He, Y. Z.
    MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2008, 478 (1-2): : 371 - 375
  • [8] Modeling time-dependent behavior of hard sandstone using the DEM method
    Guo, Wen-Bin
    Hu, Bo
    Cheng, Jian-Long
    Wang, Bei-Fang
    GEOMECHANICS AND ENGINEERING, 2020, 20 (06) : 517 - 525
  • [9] Time-dependent thermo-mechanical behavior of graphene epoxy nanocomposites: Creep, relaxation, compression
    Birkan, Besim Emre
    Bakbak, Okan
    Colak, Ozgen
    Acar, Alperen
    JOURNAL OF COMPOSITE MATERIALS, 2023, 57 (22) : 3449 - 3462
  • [10] Time-dependent behavior of flax/starch composites
    Varna, J.
    Sparnins, E.
    Joffe, R.
    Nattinen, K.
    Lampinen, J.
    MECHANICS OF TIME-DEPENDENT MATERIALS, 2012, 16 (01) : 47 - 70