GMPC: Geometric Model Predictive Control for Wheeled Mobile Robot Trajectory Tracking

被引:2
|
作者
Tang, Jiawei [1 ]
Wu, Shuang [2 ]
Lan, Bo [1 ]
Dong, Yahui
Jin, Yuqiang [3 ]
Tian, Guangjian [2 ]
Zhang, Wen-An [3 ]
Shi, Ling [1 ]
机构
[1] Hong Kong Univ Sci & Technol, Dept Elect & Comp Engn, Hong Kong, Peoples R China
[2] Huawei HongKong Res Ctr, Noahs Ark Lab, Hong Kong, Peoples R China
[3] Zhejiang Univ Technol, Coll Informat Engi neering, Hangzhou 310014, Peoples R China
来源
IEEE ROBOTICS AND AUTOMATION LETTERS | 2024年 / 9卷 / 05期
基金
中国国家自然科学基金;
关键词
Mobile robots; Trajectory tracking; Vectors; Trajectory; Manifolds; Kinematics; Algebra; Autonomous agents; motion control; IMPLEMENTATION; ALGORITHM; FILTER;
D O I
10.1109/LRA.2024.3381088
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
The configuration of most robotic systems lies in continuous transformation groups. However, in mobile robot trajectory tracking, many recent works still naively utilize optimization methods for elements in vector space without considering the manifold constraint of the robot configuration. In this letter, we propose a geometric model predictive control (MPC) method for wheeled mobile robot trajectory tracking. We first derive the error dynamics of the wheeled mobile robot trajectory tracking by considering its manifold constraint and kinematic constraint simultaneously. After that, we utilize the relationship between the Lie group and Lie algebra to convexify the tracking control problem, which enables us to solve the problem efficiently. Thanks to the Lie group formulation, our method tracks the trajectory more smoothly than existing nonlinear MPC. Simulations and physical experiments verify the effectiveness of our proposed methods. Our pure Python-based simulation platform is publicly available to benefit further research in the community.
引用
收藏
页码:4822 / 4829
页数:8
相关论文
共 50 条
  • [31] Motion modeling of a non-holonomic wheeled mobile robot based on trajectory tracking control
    Han, Xuefeng
    Ge, Mingda
    Cui, Jicheng
    Wang, Hao
    Zhuang, Wei
    TRANSACTIONS OF THE CANADIAN SOCIETY FOR MECHANICAL ENGINEERING, 2020, 44 (02) : 228 - 233
  • [32] Robust adaptive tracking control of wheeled mobile robot
    Xin, Linjie
    Wang, Qinglin
    She, Jinhua
    Li, Yuan
    ROBOTICS AND AUTONOMOUS SYSTEMS, 2016, 78 : 36 - 48
  • [33] Hybrid trajectory tracking control of wheeled mobile robots using predictive kinematic control and dynamic robust control
    Kordi, Fahimeh
    Mobayen, Saleh
    Rezaalikhani, Hamidreza
    Nikoukar, Javad
    ASIAN JOURNAL OF CONTROL, 2024,
  • [34] Adaptive Fuzzy Control of Wheeled Mobile Robots With Prescribed Trajectory Tracking Performance
    Ding, Wei
    Zhang, Jin-Xi
    Shi, Peng
    IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2024, 32 (08) : 4510 - 4521
  • [35] Neural Network-Based Adaptive Controller for Trajectory Tracking of Wheeled Mobile Robots
    Hassan, Najva
    Saleem, Abdul
    IEEE ACCESS, 2022, 10 : 13582 - 13597
  • [36] Trajectory Tracking by Terminal Sliding Mode Control for a Three-Wheeled Mobile Robot
    Shao, Jia-Xin
    Zhao, Yu-Dong
    Kim, Dong-Eon
    Lee, Jang-Myung
    INTELLIGENT ROBOTICS AND APPLICATIONS, ICIRA 2017, PT III, 2017, 10464 : 215 - 225
  • [37] Nonholonomic mobile robots' trajectory tracking model predictive control: a survey
    Nascimento, Tiago P.
    Dorea, Carlos E. T.
    Goncalves, Luiz Marcos G.
    ROBOTICA, 2018, 36 (05) : 676 - 696
  • [38] Trajectory Generation of a Two-Wheeled Mobile Robot in an Uncertain Environment
    Kim, Joonyoung
    IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS, 2020, 67 (07) : 5586 - 5594
  • [39] Trajectory Tracking Task in Wheeled Mobile Robots: A Review
    Sosa-Cervantes, C. Y.
    Silva-Ortigoza, R.
    Marquez-Sanchez, C.
    Taud, H.
    Saldana-Gonzalez, G.
    2014 INTERNATIONAL CONFERENCE ON MECHATRONICS, ELECTRONICS AND AUTOMOTIVE ENGINEERING (ICMEAE), 2014, : 110 - 115
  • [40] An Adaptive Trajectory Tracking Control of Wheeled Mobile Robots
    Wang, Jianhua
    Lu, Zhanggang
    Chen, Weihai
    Wu, Xingming
    2011 6TH IEEE CONFERENCE ON INDUSTRIAL ELECTRONICS AND APPLICATIONS (ICIEA), 2011, : 1156 - 1160