Deep learning model for the detection of prostate cancer and classification of clinically significant disease using multiparametric MRI in comparison to PI-RADs score

被引:3
作者
Yang, Chunguang [1 ]
Li, Basen [2 ]
Luan, Yang [1 ]
Wang, Shiwei [3 ]
Bian, Yang [3 ]
Zhang, Junbiao [1 ]
Wang, Zefeng [4 ]
Liu, Bo [5 ]
Chen, Xin [5 ]
Hacker, Marcus [6 ]
Li, Zhen [2 ]
Li, Xiang [6 ,7 ]
Wang, Zhihua [1 ]
机构
[1] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Urol, Wuhan, Peoples R China
[2] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Radiol, Wuhan, Peoples R China
[3] Evomics Med Technol Co Ltd, Shanghai, Peoples R China
[4] Wuhan Univ, Dept Urol, Renmin Hosp, Wuhan, Peoples R China
[5] Huazhong Univ Sci & Technol, Tongji Hosp, Tongji Med Coll, Dept Oncol, Wuhan, Peoples R China
[6] Med Univ Vienna, Dept Biomed Imaging & Image Guided Therapy, Div Nucl Med, Vienna, Austria
[7] Capital Med Univ, Beijing Chest Hosp, Dept Nucl Med, Beijing, Peoples R China
基金
中国国家自然科学基金;
关键词
Deep learning networks; Malignant prostate tumor; Clinically significant prostate cancer; multiparametric MRI; PI-RADS; BIOPSIES; ANTIGEN;
D O I
10.1016/j.urolonc.2024.01.021
中图分类号
R73 [肿瘤学];
学科分类号
100214 ;
摘要
Background: The Prostate Imaging Reporting and Data System (PI -RADS) is an established reporting scheme for multiparametric magnetic resonance imaging (mpMRI) to distinguish clinically significant prostate cancer (csPCa). Deep learning (DL) holds great potential for automating csPCa classification on mpMRI. Method: To compare the performance between a DL algorithm and PI -RADS categorization in PCa detection and csPCa classification, we included 1,729 consecutive patients who underwent radical prostatectomy or biopsy in Tongji hospital. We developed DL models by integrating individual mpMRI sequences and employing an ensemble approach for distinguishing between csPCa and CiSPCa (specifically defined as PCa with a Gleason group 1 or benign prostate disease, training cohort: 1,285 patients vs. external testing cohort: 315 patients). Results: DL-based models exhibited higher csPCa detection rates than PI -RADS categorization (area under the curve [AUC]: 0.902; sensitivity: 0.728; specificity: 0.906 vs. AUC: 0.759; sensitivity: 0.761; specificity: 0.756) ( P < 0.001) Notably, DL networks exhibited significant strength in the prostate-specific antigen (PSA) arm < 10 ng/ml compared with PI -RADS assessment (AUC: 0.788; sensitivity: 0.588; specificity: 0.883 vs. AUC: 0.618; sensitivity: 0.379; specificity: 0.763) ( P = 0.041). Conclusions: We developed DL-based mpMRI ensemble models for csPCa classification with improved sensitivity, specificity, and accuracy compared with clinical PI -RADS assessment. In the PSA-stratified condition, the DL ensemble model performed better than PIRADS in the detection of csPCa in both the high PSA group and the low PSA group.
引用
收藏
页码:158.e17 / 158.e27
页数:11
相关论文
共 26 条
[1]   Semi-automatic classification of prostate cancer on multi-parametric MR imaging using a multi-channel 3D convolutional neural network [J].
Aldoj, Nader ;
Lukas, Steffen ;
Dewey, Marc ;
Penzkofer, Tobias .
EUROPEAN RADIOLOGY, 2020, 30 (02) :1243-1253
[2]   Combining Prostate-Specific Antigen Parameters With Prostate Imaging Reporting and Data System Score Version 2.0 to Improve Its Diagnostic Accuracy [J].
Baruah, Sasanka Kumar ;
Das, Nabajeet ;
Baruah, Saumar Jyoti ;
Rajeev, T. P. ;
Bagchi, Puskal Kumar ;
Sharma, Debanga ;
Phukan, Mandeep .
WORLD JOURNAL OF ONCOLOGY, 2019, 10 (06) :218-225
[3]   Bridging the gap between prostate radiology and pathology through machine learning [J].
Bhattacharya, Indrani ;
Lim, David S. ;
Aung, Han Lin ;
Liu, Xingchen ;
Seetharaman, Arun ;
Kunder, Christian A. ;
Shao, Wei ;
Soerensen, Simon J. C. ;
Fan, Richard E. ;
Ghanouni, Pejman ;
To'o, Katherine J. ;
Brooks, James D. ;
Sonn, Geoffrey A. ;
Rusu, Mirabela .
MEDICAL PHYSICS, 2022, 49 (08) :5160-5181
[4]   Complications After Systematic, Random, and Image-guided Prostate Biopsy [J].
Borghesi, Marco ;
Ahmed, Hashim ;
Nam, Robert ;
Schaeffer, Edward ;
Schiavina, Riccardo ;
Taneja, Samir ;
Weidner, Wolfgang ;
Loeb, Stacy .
EUROPEAN UROLOGY, 2017, 71 (03) :353-365
[5]   Joint Prostate Cancer Detection and Gleason Score Prediction in mp-MRI via FocalNet [J].
Cao, Ruiming ;
Bajgiran, Amirhossein Mohammadian ;
Mirak, Sohrab Afshari ;
Shakeri, Sepideh ;
Zhong, Xinran ;
Enzmann, Dieter ;
Raman, Steven ;
Sung, Kyunghyun .
IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (11) :2496-2506
[6]   PSA testing for prostate cancer screening [J].
Castle, Philip E. .
LANCET ONCOLOGY, 2015, 16 (01) :E2-E3
[7]  
Dosovitskiy A, 2021, Arxiv, DOI arXiv:2010.11929
[8]   Biologically informed deep neural network for prostate cancer discovery [J].
Elmarakeby, Haitham A. ;
Hwang, Justin ;
Arafeh, Rand ;
Crowdis, Jett ;
Gang, Sydney ;
Liu, David ;
AlDubayan, Saud H. ;
Salari, Keyan ;
Kregel, Steven ;
Richter, Camden ;
Arnoff, Taylor E. ;
Park, Jihye ;
Hahn, William C. ;
M. Van Allen, Eliezer .
NATURE, 2021, 598 (7880) :348-+
[9]  
Grey ADR, 2022, LANCET ONCOL, V23, P428, DOI 10.1016/S1470-2045(22)00016-X
[10]  
Hiremath A, 2021, LANCET DIGIT HEALTH, V3, pE445, DOI 10.1016/S2589-7500(21)00082-0