Imaging spatial plasmon mode of nanocavity formed by Au tip and Au nanorod lattice in tip-enhanced Raman spectroscopy

被引:0
作者
He, Zhe [1 ]
Wang, Jue [2 ]
Wang, Rui [2 ,3 ]
Kurouski, Dmitry [3 ,4 ]
机构
[1] Shandong Inst Adv Technol, Jinan, Shandong, Peoples R China
[2] Southeast Univ, Sch Biol Sci & Med Engn, State Key Lab Digital Med Engn, Nanjing, Jiangsu, Peoples R China
[3] Texas A&M Univ, Dept Biochem & Biophys, College Stn, TX 77843 USA
[4] Texas A&M Univ, Inst Quantum Sci & Engn, College Stn, TX 77843 USA
基金
中国国家自然科学基金;
关键词
GOLD NANORODS; SCATTERING; RESONANCE;
D O I
10.1063/5.0199473
中图分类号
O59 [应用物理学];
学科分类号
摘要
The integration of Au nanorods in tip-enhanced Raman spectroscopy (TERS) presents a significant increase in the enhancement factor, primarily due to the gap-mode effect. By aligning Au nanorods in parallel, we construct an Au nanorod lattice, referred to as the Au nanolattice, which further amplifies the advantages of TERS imaging due to the induced inter-nanorod surface plasmon resonance. A critical aspect in this research involves investigating the distribution of hotspots within the nanolattice during TERS measurements. Additionally, we demonstrate that the tip-lattice nanocavity is a predominant factor in determining both the intensity and spatial distribution of these hotspots. Employing the experimental and simulation results, we illustrate the enhancement effect of the tip-lattice cavity and elucidate the connection between the hotspot intensity and cavity size. This comprehensive approach contributes to our understanding of the nano-lattice's role in TERS and offers valuable insights for optimizing nanophotonic applications.
引用
收藏
页数:6
相关论文
共 24 条
[1]   Spatio-Spectral Characterization of Multipolar Plasmonic Modes of Au Nanorods via Tip-Enhanced Raman Scattering [J].
Bhattarai, Ashish ;
O'Callahan, Brian T. ;
Wang, Chih-Feng ;
Wang, ShanYi ;
El-Khoury, Patrick Z. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2020, 11 (08) :2870-2874
[2]   Nano-gap between a gold tip and nanorod for polarization dependent surface enhanced Raman scattering [J].
Cao, Zhengmin ;
He, Yingbo ;
Cheng, Yuqing ;
Zhao, Jingyi ;
Li, Guantao ;
Gong, Qihuang ;
Lu, Guowei .
APPLIED PHYSICS LETTERS, 2016, 109 (23)
[3]   Gold nanorods and their plasmonic properties [J].
Chen, Huanjun ;
Shao, Lei ;
Li, Qian ;
Wang, Jianfang .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (07) :2679-2724
[4]   Electron energy loss spectroscopy of gold nanoparticles on graphene [J].
DeJarnette, Drew ;
Roper, D. Keith .
JOURNAL OF APPLIED PHYSICS, 2014, 116 (05)
[5]   Electron Energy Loss Spectroscopy of Surface Plasmon Resonances on Aberrant Gold Nanostructures [J].
Forcherio, Gregory T. ;
DeJarnette, Drew ;
Benamara, Mourad ;
Roper, D. Keith .
JOURNAL OF PHYSICAL CHEMISTRY C, 2016, 120 (43) :24950-24956
[6]   Plasmon Coupling of Gold Nanorods at Short Distances and in Different Geometries [J].
Funston, Alison M. ;
Novo, Carolina ;
Davis, Tim J. ;
Mulvaney, Paul .
NANO LETTERS, 2009, 9 (04) :1651-1658
[7]   Making simulations with the MNPBEM toolbox big: Hierarchical matrices and iterative solvers [J].
Hohenester, Ulrich .
COMPUTER PHYSICS COMMUNICATIONS, 2018, 222 :209-228
[8]   Gold Nanorods: From Synthesis and Properties to Biological and Biomedical Applications [J].
Huang, Xiaohuo ;
Neretina, Svetiana ;
El-Sayed, Mostafa A. .
ADVANCED MATERIALS, 2009, 21 (48) :4880-4910
[9]   Dark-field microscopy studies of polarization-dependent plasmonic resonance of single gold nanorods: rainbow nanoparticles [J].
Huang, Youju ;
Kim, Dong-Hwan .
NANOSCALE, 2011, 3 (08) :3228-3232
[10]   The Accurate Imaging of Collective Gold Nanorods with a Polarization-Dependent Dark-Field Light Scattering Microscope [J].
Liu, Jia Jun ;
Wen, Shuai ;
Yan, Hui Hong ;
Cheng, Ru ;
Zhu, Fu ;
Gao, Peng Fei ;
Zou, Hong Yan ;
Huang, Cheng Zhi ;
Wang, Jian .
ANALYTICAL CHEMISTRY, 2023, 95 (02) :1169-1175